Explosive Mixtures.—If a small quantity of liquid petrol or benzol be placed in an open vessel and exposed to a current of air it will quickly disappear or evaporate. We say that the liquid petrol has been vaporized or turned into petrol vapour. A mixture of air and petrol vapour can be ignited and burnt, the rate of burning being affected by the strength of the mixture. The strength of the mixture is determined by measuring the respective volumes of air and petrol vapour present in a known volume of the mixture. It is possible to form a mixture of air and petrol vapour in such proportions that when ignited by an electric spark it will be completely burnt The Meaning of Suction.—Imagine an iron cylinder A (Fig. 1) held down on a rigid base C and fitted with a gas-tight piston B. If we pull the piston down sharply to the position shown in Fig. 2 we will realize that there is apparently some force inside the cylinder which is trying to suck the piston up again. The fact that the piston is being withdrawn and no more air or gas admitted above it to fill up the volume it has displaced on its descent causes a partial vacuum in the cylinder. Now if by means of a tap or valve of some kind we could put the cylinder in communication with the atmosphere, air would rush in and fill up the cylinder until the pressure of the gases The Meaning of Compression.—Close the tap or valve and push the piston up again sharply to its original position of Fig. 1. You will now encounter considerable resistance and experience a force pushing down against you because you are reducing the volume of the gas and thereby increasing its pressure; that is to say, you are compressing the gas, because you are now making an amount of gas that recently occupied the whole cylinder fit itself into the small space between the top of the cylinder and the crown of the piston. In technical language you would say, “the piston has now compressed the charge” of gas within the cylinder. The Meaning, of a Stroke.—In an engine such as is The Otto Cycle.—Most petrol engines operate on what is known as the “Otto” cycle, in which the cycle of events is completed once in every four strokes (or two revolutions) made by the engine. The “Otto” cycle is therefore usually referred to as the four-stroke cycle. In the accompanying diagrams (Figs. 3, 4, 5, and 6) we show in diagrammatic form the interior of a petrol engine cylinder fitted with mushroom type valves. In studying the figures we assume the engine is being cranked round by hand in the direction of the arrow while we view it from the “flywheel” end (i.e. the end adjacent to the driver’s seat), then A is the pipe which leads the mixture of air and petrol vapour from the carburettor to the cylinder and is called the induction pipe. C is the cylinder, P the piston, I the inlet valve, E the exhaust valve, T the connecting rod, R the crank, and S the sparking plug. The pipe B which leads the burnt gases from the (1) On the first downstroke made by the piston a suction effect or partial vacuum is produced in the cylinder; the air and petrol vapour in the induction pipe being at atmospheric pressure, which is in excess of that now existing in the cylinder, flow into the cylinder as soon as the inlet valve I is opened by the engine mechanism. At the end of this, the suction stroke, the inlet valve closes and traps the charge of explosive mixture in the engine cylinder. This is shown in Fig. 3. (2) On the first upstroke made by the piston the charge of explosive mixture is compressed ready for firing. Both valves are shut. This is shown in Fig. 4. (3) On the second downstroke made by the piston the sparking plug S passes a spark which explodes the charge at the very commencement of the downward move (4) On the second upstroke of the cycle the piston pushes the remaining burnt gases out of the cylinder through the exhaust valve. When the piston reaches the top of its stroke the exhaust valve closes. This is shown in Fig. 6. The cycle of operations then begins again, giving one power stroke and three idle strokes each time as already described. |