It has been suggested that some reference, of an apologetic nature, to the title of this book may be desirable, so I wish to point out that it can really be justified. Science, says Driesch, is the attempt to describe Givenness, and Philosophy is the attempt to understand it. It is our task, as investigators of nature, to describe what seems to us to happen there, and the knowledge that we so attain—that is, our perceptions, thinned out, so to speak, modified by our mental organisation, related to each other, classified and remembered—constitutes our Givenness. This is only a description of what seems to us to be nature. But few of us remain content with it, and the impulse to go beyond our mere descriptions is at times an irresistible one. Fettered by our habits of thought, and by the limitations of sensation, we seem to look out into the dark and to see only the shadows of things. Then we attempt to turn round in order that we might discover what it is that casts the shadows, and what it is in ourselves that gives shape to them. We seek for the Reality that we feel is behind the shadows. That is Philosophy. The Physics of a generation earlier than our own thought that it had discovered Reality in its conception of an Universe consisting of atoms and molecules in ceaseless motion. What it described were only motions and transformations, but it understood these motions and transformations as matter and energy. Yet more Both Physics and Biology did get to work, with the results that we know. But Physics advanced far beyond the acquirement of the results that stimulated Biology to formulate our present hypotheses of evolution and heredity. As its knowledge accumulated, it began to doubt whether matter and energy, atoms and molecules, mass and inertia—all those things which it thought at first were so real—were anything else after all than ways in which our mental organisation dealt with crude sensations. They might, as Bergson said later on, be the moulds into which we pour our perceptions. Physics set up a test of Reality, the law Thus Physics constructed a dynamical Universe, that is, one which consisted of atoms which attracted or repelled each other with forces which were functions of the distances between them. Even now this conception of a dynamical, Newtonian Universe is a useful one, though we recognise that it is only symbolism. But it was not a conception with which Physics could long remain content. How could atoms separated from each other by empty space act on each other, that is, how could a thing act where it was not? There must be something between the atoms. The Universe could not be a discontinuous one, and so Physics invented an Universe that was full. It was an immaterial, homogeneous, imponderable, continuous Universe. That which existed behind the appearances of atoms and molecules and energy was It is only in our own times that Biology has become sceptical and has begun to doubt whether its earlier Philosophy is a sound one. That which it describes—the object-matter of its Science—is not that which Physics describes. There are two domains of Givenness, the organic and the inorganic. Biology, leaning on Physics, studied motions and transformations, just as Physics did, though the motions which it studied were more complex and the transformations more mysterious. But borrowing the methods of investigation of Physics it borrowed also its Philosophy, and so it placed behind its Givenness the Reality that Physics at first postulated and then abandoned. The organism was therefore a material system actuated by energy. The notion, it should be noted, is not a deduction from the results of Biology, but only from its methods. Did Physiology, that is, the Physiology of the Schools, ever really investigate the organism? A muscle-nerve preparation, an excised kidney through which blood is perfused, an exposed salivary gland which is stimulated, even a frog deprived of its cerebral hemispheres—these things are not organisms. They are not permanent centres of action, autonomous Nevertheless all this is only a description, and our Philosophy must be the attempt to understand our description. The mechanistic biologist, in the attempt to identify his Philosophy with that of a former generation of physicists, says that he is describing a physico-chemical aggregate—an assemblage of molecules of a high degree of complexity—actuated by energy, and undergoing transformations. But our scepticism as to the validity of this conclusion is aroused by reflecting on its origin. If it was borrowed from the Philosophy of a past Physics, and if the more penetrating analysis of the Physics of our own time has made a new Philosophy desirable, should not Biology also revise its understanding of its descriptions? For Biology has not stood still any more than Physics, and the Physiology of our own day has become different from that of the times when the mechanistic Philosophy This, then, is all that we mean by the philosophy of Biology—the attempt to understand the descriptions of the Science in the light of its later investigations. Philosophy, in the academic sense, we have not considered in relation to the subject-matter of our science, though there is much in the classic systems that is of absorbing interest, even to the working investigator of the nineteenth century. The biological education is not, however, such as to predispose one towards these studies. The reader will recognise that the point of view, and the methods of treatment, adopted in this book are those suggested by Driesch and Bergson, even if no references are given. He may, perhaps, appreciate this limitation; for, influenced by the modern scientific training, he may be inclined to regard Philosophy as Mark Twain regarded his Egyptian mummy: if he is to have a corpse it might as well be a real fresh one. J. J. Liverpool |