Let us suppose that we are walking along a street in a busy town; that we are familiar with it, and all the things that are usually to be seen in it, so that our attention is not likely to be arrested by anything unusual; and let us further suppose that we are thinking about something interesting but not intellectually difficult. In these circumstances all the sights of the town, and all the turmoil of the traffic fail to impress us, though we are, in a vague sort of way, conscious of it all. Electric trams approach and recede with a grinding noise; a taxicab passes and we hear the throb of the engine and the hooting of the horn, and smell the burnt oil; a hansom comes down the street and we hear the rhythmic tread of the horse’s feet and the jingle of the bells; we pass a florist’s shop and become aware of the colour of the flowers and of their odour; in a cafÉ a band is playing “ragtime.” There are policemen, hawkers, idlers, ladies with gaily coloured dresses and hats, newsboys, a crowd of people of many characteristics. It is all a flux of experience of which we are generally conscious without analysis or attention, and it is a flux which is never for a moment quite the same, for everything in it melts and flows into everything else. The noise of the tram-cars is incessant, but now and then it becomes It is easy to discover that many things must have occurred in the street which did not affect our full consciousness. We may learn afterwards that we have passed several friends without recognising them; we may read in the newspapers about things that happened that we might have seen, but which we did not see; we may think we know the street fairly well, but we find that we have difficulty in recalling the names of three contiguous shops in it; if we happen to see a photograph which was taken at the time we passed through the street we are usually surprised to find that there were many things there that we did not see. Why is it, then, that so much that might have been perceived by us was not really perceived? We cannot doubt that everything that came into the visual fields of our eyes must have affected the terminations of the optic nerves in the retinas; the complex disturbances of the air in the street must have set our tympanic membranes in motion; and all the odoriferous particles inhaled into our nostrils must have stimulated the olfactory mucous membranes. In all these cases the stimulation of the receptor organs must have initiated nervous impulses, and these must There is, of course, no doubt that we did see and hear and smell all the things that occurred in the street during our aimless peregrination, that is, all the things which so happened that they were capable of affecting our organs of sense. This is true if we mean by seeing and hearing and smelling merely the stimulation of the nerve-endings of the visual, auditory, and olfactory organs, and the conduction into the brain of the nervous impulses so set up. But merely to be stimulated is only a part of the full activity of the brain; the stimulus transmitted from the receptor organs must result in some kind of bodily activity if it is to affect our stream of consciousness. Two main kinds of activity are induced by the stimulation of a receptor organ and a central ganglion, (1) those which we call reflex actions, and (2) those actions which we recognise as resulting from deliberation. We must now The term “reflex action” is one that denotes rather a scheme of sensori-motor activity than anything that actually happens in the animal body; it is a concept that is useful as a means of analysis of complex phenomena. In a reflex three things happen, (1) the stimulation of a receptor organ and of the nerve connecting this with the brain, (2) the reflection, or shunting, of the nervous impulse so initiated from the terminus ad quem of the afferent or sensory nerve, to the terminus a quo of the efferent or motor nerve, and (3) the stimulation of some effector organ, say a motor organ or muscle, by the nervous impulse so set up. The simplest case, perhaps, of a reflex is the rapid closure of the eyelids when something, say a few drops of water, is flicked into the face. Stated in the way we have stated it the simple reflex does not exist. In the first place, it is a concept based on the structural analysis of the complex animal where the body is differentiated to form tissues—receptor organs, nerves, muscles, glands, and so on. But a protozoan animal, a Paramoecium for instance, responds to an external stimulus by some kind of bodily activity, and yet it is a homogeneous, or nearly homogeneous, piece of protoplasm, and this simple protoplasm acts at the same time as receptor organ, conducting tissue or nerve, and effector organ. In the higher animal certain parts of the integument are differentiated so as to form visual organs, and the threshold of these for light stimuli is raised while it is lowered for other kinds of physical stimuli. Similarly other parts of the integument are modified for the reception of auditory stimuli, becoming more susceptible for these but less susceptible for other kinds of stimuli than the adjacent It is also a schematic description that assumes a simplicity that does not really exist. As a rule a reflex is initiated by the stimulation of more than one receptor organ, and the impulses initiated may thus reach the central nervous system by more than one path. There is no simple shunting of the afferent impulse from the cell in which it terminates into another nerve, when it becomes an efferent impulse; but, instead of this, the impulse may “zigzag” through a maze of paths in the brain or spinal cord connecting together afferent and efferent nerves and ganglia. Further, the final part of the reflex, the muscular contraction, is far from being a simple thing, for usually a series of muscles are stimulated to contract, each of them at the right time and with the right amount of force, and every contraction of a muscle is accompanied by the relaxation of the antagonistic muscle. There are muscles which open the eyelids and others which close them, and the cerebral impulse which causes the levators to contract at the same time causes the depressors to relax. It is quite necessary to remember that the simple We dare hardly say that the simple reflex is an unconsciously performed action, although we are not conscious, in the fullest sense of the term, of the reflexes that habitually take place in ourselves. But even in the decapitated frog, which moves its limbs when a drop of acid is placed on its back, something, it has been said, akin to consciousness may flash out and light up the automatic activity of the spinal cord. We must not think of consciousness as that state of acute mentality which we experience in the performance of some difficult task, or in some keenly appreciated pleasure, or in some condition of mental or bodily distress; it is also that dimly felt condition of normality that accompanies the satisfactory functioning of the parts of the bodily organism. But this dim and obscure feeling of the awareness of our actions is easily Much of the stimulation of our receptor organs is of this generally occurring nature, and we are not aware of it although the stimuli received are such as to induce useful and purposeful bodily activity. In walking along the street we automatically avoid the people, and the other obstacles that we encounter, by means of regulated movements of the body and limbs, but this is activity that has become so habitual and easy that we are hardly aware of it, and not at all, perhaps, of the physical stimuli which induce it. But not only do we receive stimuli which are reflected into bodily actions without our being keenly aware of this reception, but we also receive stimuli which do not become reflected into bodily activity. It is, Bergson suggests, as if we were to look out into the street through a sheet of glass held perpendicularly to our line of sight; held in this way we see perfectly all that happens in front of us, but when we incline the glass at a certain angle it becomes a perfect reflector and throws back again the rays of light that it receives. This is, of course, a physical analogy, and no comparison of material things with psychical processes can go very far, but in a way it is more than an analogy. In our indolent absorbed state of mind we do not as a rule see the objects which we are not compelled to avoid, and which do not, in any way, influence our immediate condition of bodily activity. The optical images of all these things are thrown upon our retinas and are, in some way, thrown or projected upon the central ganglia, but there the series of events comes to an end, for the images are not reflected out towards the periphery of the body as muscular actions. We cannot doubt that this is why we do not perceive all But even then perception need not arise. It does not, as a rule, accompany the automatically performed reflex action, because the latter is the result of intra-cerebral activities that have become so habitual that they proceed without friction. There are innumerable paths in the brain along which impulses from the receptor organs may pass into the motor ganglia, but in the habitually performed reflex actions these paths have been worn smooth, so to speak. The images of objects which are perceived over and over again by the receptor organs glide easily through the brain and as easily translate themselves into muscular, or some other kind of activity. The things that matter in the life of an animal which lives “according to nature” are cyclically recurrent events in which, after a time, there is nothing new. Most of them proceed just as well in the animal deprived of its cerebral hemispheres by operation as in the intact cerebrate animal. In the performance of actions of this kind the organism becomes very much of an automaton. Let something unusual happen in the street while we are walking through it—a runaway horse, or the fall of an overhead “live” wire, for instance, something that has seldom or never formed part of our experience, and something that may have an immediate effect on us as living organisms. Then perception arises at once because the stimulation of our organs of sense presents us with something which is unfamiliar, and yet not so unfamiliar that it does not recall from memory, or from derived experience, reminiscences of the That is to say, we perceive and think because we act. We do not look out on the environment in which we are placed in a speculative kind of way, merely receiving the images of things, and classifying and remembering them, while all the time we are passive in so far as our bodily activities are concerned. If the results of modern physiology teach us anything in an unequivocal way they teach us this—that the organs of activity, muscles, glands, and so on, and the organs of sense and communication, are integrally one series of parts, and that apart from motor activity nervous activity is an aimless kind of thing. It is because we act that we think and disentangle the images of things presented to us by our organs of sense, and That is to say, in thinking about the flux of consciousness we decompose it into what we regard as its constituent parts, and we confer upon these parts separate existence in space and time. But it is clear that none of the things which we thus regard as the elements of our consciousness has any real existence apart from the others. The smell of the flowers and that of the burnt oil interpenetrate in our consciousness of the stimulation of our olfactory organs just as do the jingle of the cab bells, the music of the orchestra, and the throb of the motor car in the impressions transmitted by our auditory organs. It is difficult to see that all these things, with the multitude of other things which we perceive, constitute a “multiplicity in unity,” that is an assemblage of things which are separate things, but which do not lie alongside each other in space and mutually exclude each other, but which are all jammed into each other, so to speak. It is easy to see that we are conscious of a heterogeneity, and whenever we think of this multitude of things it seems natural that we should separate them from each other. The stream of our consciousness is so complex that we cannot attend to it all at once, not even to the few things that we have picked out in our example. If we concentrate our attention on any part, or rather aspect of it, all the rest ceases to exist, or rather we agree to ignore it, and this very concentration of thought upon one part of our experience isolates it from all the rest. To a certain extent the analysis of the complex of sensation is the result of the work of different receptor organs; certain Suppose that we draw a curve AB freehand with a single undivided sweep of the pencil. By making a certain assumption—that the curve which we drew was one that might be regarded as cyclical, that is, might be repeated over and over again—we can subject it to harmonic analysis. We can decompose it into a number of other curves (CD, EF, etc.), each of which is a separate “wave” rising above and falling below the axis OX in a symmetrical manner. If we draw any vertical line MN cutting these curves, we shall find that the distance between the axis OX and the If we dissociate the stream of consciousness in this way, breaking it up into states which we choose to regard as separate from each other, we shall see that of the elements which we thus isolate many are like each other and can be associated. Obviously there is a greater resemblance between different smells So also with colour. If we had no such apparatus as prisms or diffraction gratings, which enable us to find what is the wave length of light, should we have any idea of the spectral hues, red, yellow, orange, green, etc., as differing from each other quantitatively? It is certain that we should not. But observation and experiment have shown that the nerve-endings of the optic nerve in the retina are stimulated by vibrations of something which we agree to call the ether of space, and that the frequency of vibration of light which we call red is less than that which we call orange, while the frequency of vibration of orange light is less again than that of blue light, and so on. To our consciousness red, orange, yellow, and blue light are absolutely different, but we disregard this intuition and we say that our perceptions of light are similar in kind but differ, in some of them are more intense than are some others. Again, have we any intuitive knowledge of increasing temperature? If we dip our hands into ice-cold water the sensation is one of pain, if the water has a temperature of 5°C. it feels cold, if it is at 15°C. we have no particular appreciation of temperature, if at 25°C. it feels very warm, if it is at 60° it is very hot, and if it is at 90° we are probably scalded and the feeling is again one of pain. If we place a thermometer in the water we notice that each sensation in turn is associated with a progressive lengthening of the mercury thread, and if we investigate the physical condition of the water we find that at each stage the velocity of movement of the molecules was greater than that at the preceding stage. We say, then, that Suppose we listen to the note emitted by a syren which is sounding with slowly increasing loudness but with a pitch which remains constant. We do not notice at first that the sound is becoming louder, but after a little time we do notice a difference. Let us call the amplitude of vibration of the air when the syren first sounds E, and then, when we notice a difference, let us call the amplitude ?E+E, ?E being the increment of amplitude. Let us call our sensation when the syren first sounds S, and our sensations when the sound has become louder S+?S, ?S being the “increment of sensation.” Then the relation holds:—
If we plot these equal increments of loudness as the dependent variable S in a graph, and the amplitude of the vibrations of the atmosphere as the independent variable E, we can obtain the following curve. If we investigate this we shall find that a certain relation exists between the “values” of the sensation and the values of the stimuli that correspond to them; a regular increase in the loudness of the sensation corresponds to a regular increase in the logarithms of the strength of the stimuli. Let S = the sensation, E the stimulus, and C and Q constants; then
Thus we decompose our stream of consciousness into a series of quantitatively different and qualitatively different things, upon each of which we confer independent existence. We attribute to these different aspects of our consciousness extension, but the extension is due only to our analysis; for the qualities of pitch, loudness, colour, odour, etc., which we disentangle from each other, did not exist apart from each other, any more than do the sine and cosine curves into which we decompose an arbitrarily drawn curved line. The multiplicity of our consciousness is intensive, like the multiplicity that we see to exist in the abstract number ten. This number stands for a group of things, but its multiplicity is intensive and only exists because we are able to subdivide anything in thought to an indefinite extent. Now, so far we have only separated what we agree to regard as the elemental parts of our general perception of the environment, but it is to be noted that we have not given to these elements anything like spatial extension. We may, if we like, regard our intuition of space as that of an indefinitely large, homogeneous, empty medium which surrounds us and in which we may, in imagination, place things. So regarded it is difficult to see in what way our notion of space differs from our idea of “nothing,” a pseudo-idea incapable of analysis, except into the idea of something which might be somewhere else. The more we think about it the more we shall become convinced that space, that is the “form” of space, represents our actual or potential modes of motion, that is, our powers of exertional activity. Space, we say, has three dimensions; in all our analysis of the universe, and of the activities that we can perceive in it, this idea of movement in three dimensions, forward and backward, up and down, There is a little Infusorian which lives, in its adult phase, on the surface of the spherical ova of fishes. These ova float freely in sea water, and the Infusorian crawls on their surfaces, moving about by means of ciliary appendages. It does not swim about in the water, but adheres closely to the surface of the ovum on which it lives. Let us suppose that it is an intelligent animal and that it is able to construct a geometry of its own; if so, this geometry would be very different from our own. It would be a two-dimensional geometry, for the animal can move backward and forward, and right and left, but not up and down; it is a stereotropic organism, as Jacques Loeb would say, that is, it is compelled by its organisation to apply its body closely to the surface on which it lives. But its two-dimensional geometry would, on this account, be different from ours. Our straight lines are really the directions in which we move from one point to another point in Our three-dimensional geometry depends, therefore, on our modes of activity and the concepts with which it operates; points, straight lines, etc. are conceptual limits to those modes of activity. We can imagine a straight line only as a direction along which we can move without deviating to the right or the left, or up or down. But even if we draw such a line on paper with a fine pencil the trace would still have some width, and we can imagine ourselves small enough to be able to deviate to the right or the left within the width of the line drawn on the paper. We might make a very small mark on the paper, but no matter how small this mark is it would still have some magnitude; otherwise we should be unable to see it. If the straight line had no width and the point no magnitude they would have no perceptual existence. Our perceptual triangles are not figures, the angles of which are necessarily equal to two right angles. If we drive three walking sticks into a field and then measure the angles between them by means of a sextant we shall find that the sum is nearly 180°, but in general not that amount. If we stick a darning needle into the heads of each of the walking sticks and then remeasure the angles by means of a theodolite we shall obtain values which are nearer to that of two right angles, but we should not, except by “accident,” obtain exactly this value. We do not, therefore, get the “theoretical” result, and we say this is because of the errors of our methods of observation; but why do we suppose that there is such a theoretical result from which our observations deviate, if our observations But by “reasoning” about the “properties” of these lines and triangles in plane two-dimensional space, we should arrive at the conclusion that the angles of a triangle were equal to 180°, and neither more nor less. We should then think of a straight line as still a path along which we move in imagination, and a path which still has some width. But we imagine the width of the path to become less and less, so that, even if we imagine ourselves to become thinner and thinner, we should be unable to deviate either to the right or left in moving along the path, because the thinner we make ourselves the thinner becomes also the path. We imagine our intuition of a deviation to the right or left becoming keener and keener, so that, no matter how small the deviation we should still be able to appreciate it by the extra exertion which it would involve. We think of a point as a little spot, and we think of ourselves as being very small indeed, so that we can move about on this spot. But we can reduce the area of the spot more and more, until it This means that we substitute conceptual lines and points and triangles for the perceptual ones of our experience, and then we operate in imagination with these concepts. That is to say, we carry our modes of exertional activity to their limits,3 in the way which we have tried to indicate above—a process of thought which is the foundation of the reasoning of the infinitesimal calculus. What we call space, therefore, depends on our intuition of bodily exertion. This intuition includes the knowledge that a certain change has occurred as the consequence of the expenditure of a certain amount of bodily energy, and that, as the result of this change, the relation of the rest of the universe to our body has become different. We think of our body as the origin, or centre, of a system of co-ordinates:— We imagine three lines at right angles to each other to extend indefinitely out into space, and we think of ourselves as being situated at the point of intersection of these three straight lines. If anything moves in the universe outside ourselves we can resolve this motion into three components, each of which is to be measured along one of the axes of our system of co-ordinates. But any motion whatever in the universe outside ourselves can be represented equally well by supposing that the origin of the system of co-ordinates has been changed; that is, by supposing that we have changed our position relative to the rest of the universe. Therefore motion outside ourselves is not to be distinguished from a contrary motion of our own body—a statement of the “principle of relativity”—except that any change outside ourselves may be distinguished from that compensatory change in the position of our body which appears to be the same thing, by the absence of the intuition that we have expended a certain quantity of energy in producing the change. Conscious motion of our own body is something absolute; all other motion is relative. So far we have been speaking of our crude bodily motion, but a very little consideration will show that our knowledge of space attained by scientific measurements depends just as much on our intuition of our bodily activity, and its direction; the measurement of a stellar parallax, or that of the meridian altitude of the sun, for instance, by astronomical instruments, involves bodily exertion, though of a refined kind. Three-dimensional space, that is our space, therefore represents the manner of our activity, just as convex two-dimensional space represents the manner of the activity of the Infusorian, and one-dimensional space would represent the manner of activity of an animal Motion, whether it be that of our own body in controlled muscular activity, or that imaginary motion of the environment which we call giddiness, or a sensibly perceived motion of some part of the environment, that is, a motion which we can compensate by some actual or imaginary change in the position of our own body produced by our own exertion, is an intuitively felt change, and is incapable of intellectual representation. It is not clearly conceived either in ancient or in modern geometry. Euclidean geometry is, as we have seen, based directly on our intuition of bodily exertion, but it is essentially static in treatment. Let it be admitted that we can draw a straight line of any length and in any direction, and so on; then we regard these straight lines, etc., as motionless, abstract things, and we proceed to discuss their relationships. Cartesian geometry, and the methods of the infinitesimal calculus, do not treat of real motion, and the concept, if it is introduced at all, is introduced illegitimately and surreptitiously. Consider what we do when we “plot a curve.” Let the latter be a We proceed to fix the positions of a series of points in this way: there are two straight lines, OX and OY, at right angles to each other, and we measure off certain steps along the line OX; these steps are OX0·5, OX1, OX1·5, OX2, and so on, the small numerals indicating the distance of each point (OX0·5, etc.) from the origin O. We then draw lines perpendicular to the X-axis through these points. We have now to calculate one-half of the square of each of these lengths OX0·5, OX1, etc., and then we mark off these calculated lengths along the perpendicular lines. The point A, for instance, is 12(0·5)2 from the point X0·5, B is 12(1)2 from X1, and so on. In this way we obtain a series of points, A, B, C, D, E, etc., and these are points on the locus of the “moving” point. There is nothing at all about motion here. All that we have done is to measure lengths. We have made a kind of counterpoint, X-points against Y-points, but we have not even made a curve. We connect the points A, B, C, D, E, etc., by means of short, straight lines, and then we may connect together these short lines, and, if we plot a number of intermediate points between those that we have already obtained and join these, the points may be so close together that they may seem to be indistinguishable from a curve. Yet, no matter how numerous they may be, they can never be connected together so as to form a curve; we therefore draw a curved line freehand through them, and at once, in so doing, we abandon our intellectual methods, for our curve depends on our intuition of continuously changing direction. But if we think about it we shall find that we can form no clear intellectual notion of continuity and we can only measure the curvature of a line at a point in the line by drawing a tangent to the curve at this point, and then by measuring the slope of the tangent. The curve itself we obviously leave out of consideration. We cannot conceive of the point moving along the locus OD. We can think of it only as at the places O, A, B, C, D, E, etc., but we must neglect the intervals OA, AB, BC, CD, DE, and so on, or we can divide them into smaller intervals by supposing the point to have occupied the positions f, g, i, j, between the points A and B, for instance. Yet, no matter how many these But the moving point occupies successively a number of different positions in space. If it is a material point that we observe to move from one place to another, we perceive that a certain interval of our duration corresponds with the change of position of the point. Duration was not used up in the occupancy of the different positions O, A, B, C, D, E, and so on, nor in that of the occupancy of the indefinitely numerous other positions in which we may place the moving point, but in the intervals themselves. We have said “duration” and not “time,” using Bergson’s term. By duration and time we understand different things. Time is, for us, only a series of standard events which punctuate, so to speak, our experienced duration. The unit of time is the sidereal day, that is, the interval of time between two successive transits of a fixed star across the arbitrary meridian. But if we try to conceptualise this interval we find that we can do so only by breaking it up into smaller intervals, and this we do by using a pendulum of a certain length which makes a certain number of swings (86,400) during the interval between the two transits of the star. Thus we do not conceptualise the actual intervals of duration of which we are able to mark the end-points; they are lived by us, and they are real absolute things independent of our wills. Suppose we come in from a long walk, tired and thirsty, and ask the maid to get tea ready at once. She puts the kettle on the gas stove and then sits down to read. The water takes, say, five minutes to boil. What do we mean by this? This is what we mean:— What we call time here is only a series of simultaneously occurring events. The standard events are the positions of the hands of the clock on the clock face, that is, lengths of arc recording the number of swings of the pendulum that have occurred since the beginning of the operation of the boiling of the kettle. When this began, the hands of the clock were at, say, 4.30, and the temperature of the water was then, say, 17°C.; and, when it ended, the hands of the clock were at 4.35 and the temperature of the water was 100°C. It is only the simultaneities of these events that we have recorded and not the interval of duration that they mark. It does not matter how many times we But we had to wait for the kettle to boil, and the temperature 100° was attained after the temperature 90°, and so on. What does this mean? While we were waiting, the water seemed to take an intolerably long time to boil. But the maid was reading one of Mr Charles Garvice’s novels, and “before she knew where she was” the kettle boiled over. There was a certain interval of duration experienced by her, and another, but different, interval of duration experienced by us. In each case there was a stream of consciousness. We felt fatigue, thirst, a lack of satisfaction, wandering attention, and irritation—all that was our duration. But the maid was identifying herself with Lady Mary, who had sprained an ankle and was being helped along by the new, young gamekeeper, and that was her duration. There need not be any succession of events in the conceptual representation of a physical process. There is, for instance, no succession in such a conception as is represented by the following diagram—a conception well worth analysis:— The figure represents a tracing made by a muscle-nerve preparation. A living muscle taken from an animal has been attached to a light lever, the end of which makes a scratch on a piece of smoked paper. The paper is fastened on a revolving cylinder and so long as the muscle is motionless the end of the lever marks a horizontal line on the paper. But if the muscle is stimulated so that it contracts and then relaxes again the lever is pulled up and is then lowered, and so its point makes a curve on the paper. The nerve going to the muscle can be stimulated electrically and the moment of the stimulation can be recorded by another lever, which makes a mark on the paper below the trace made by the lever which is attached to the muscle. Two such shocks have been applied to the nerve and they have elicited two contractions of the muscle and these two contractions have fused together. In the actual experiment the operators could see that the muscle moved, and they could feel that a certain interval of their own duration coincided with the interval between the first and second depressions of the key that made the electric shocks. But the extent of motion of the muscle was too small, and the depressions of the key succeeded each other too rapidly to be easily observed, and therefore all these events were made to record themselves on the myogram. The series of little notches at the base of the figure represent the movements of the time-lever, that is, they are scratches made on the paper by a little lever which moves up and down at a rate fixed beforehand. Now when this time lever had made ten notches on the paper the first shock was applied to the nerve, and at the eleventh the muscle began to contract. At the seventeenth notch the second shock was applied and the muscle continued to contract. At the twenty-fifth A succession of events is in ourselves and not in the events observed. If a point is said to move along the locus OD through the positions A, B, C, it is we that have the feeling of succession, and the whole trajectory, or locus, or path of the point corresponds with a portion of our duration. The operation of boiling the kettle corresponds with a portion of our duration, which in its turn corresponds with that part of our duration which was marked by the positions of the hands of the clock. Thus we perceive a simultaneity In reality time, in the sense of the astronomer’s time, does not enter into the methods of the mathematical physicist. Let us suppose that he is investigating the change that occurs in a material system between the two moments of time t1 and t2, these moments being separated from each other by a period of duration that we can feel. Let the system be, say, the earth and moon; the first body being supposed to be motionless, and the second being supposed to have a certain tangential velocity of movement. If the interval t1 to t2 is really an interval of astronomical time, the problem, what is the difference of position of the moon owing to the gravitation of the earth, is incapable of solution, and even if we reduce the interval of time indefinitely while still supposing that it is a finite interval, the mathematical difficulty remains. We then replace the finite interval t1 to t2 by the differential dt, which means that the two phases of Things that happen in a part of inorganic nature arbitrarily detached from the rest, and investigated by the methods of mathematical physics, do not endure. Let us suppose that we take some silver and add nitric acid to it: the metal dissolves. We can then add hydrochloric acid to the solution and precipitate the metal in the form of chloride; and we can then fuse this chloride with carbonate of soda, or some other substance, and so obtain the metal again. If we work carefully enough we can repeat this series of operations again and again and the original portion of silver will remain unchanged both in nature and in mass. All the chemical reactions into which it has entered have not affected it in any way; that is to say, these reactions have not endured. If we inject a serum, containing a toxin, into the blood stream of a susceptible animal, certain things happen. The animal will become ill, but, provided that the amount of serum which has been injected was not too great, it will recover. If the toxin be again injected a reaction occurs, but the animal does not become so ill as on the first occasion, and after a number of injections the dose administered may be so great as to kill a susceptible animal but may yet produce no effect on the animal which is the subject of the process This is what we must understand by the duration of the organism. Everything that it experiences for the first time persists in its organisation. It acquires the ability of responding to some stimulus by a definite, purposeful reaction, the effect of which is to aid it in its struggle for existence; and this reaction, once This is the duration of the intelligently acting animal: it is not merely memory, but memory and the accumulation of all its past modes of responding to changes in its environment, whether these modes of response were conscious ones (as in the case of an intelligently performed or “learned” action), or unconscious ones (as, for instance, in the case of the acquirement of immunity by an animal which had become able to resist disease). It is not merely the experience of the individual organism, but also all the experience of those things which were done or experienced by the ancestry of the organism, and which were transmitted by heredity to the progeny. Motor habits are formed, so that much the same series of muscular actions are carried out when a stimulus formerly experienced is again experienced. Pure memory remains, so that the images of past things and actions somehow persist in our consciousness. Physical analogy suggests that these images are inscribed on the substance of the brain or are stored away in some manner; but, apart from the incredible difficulty of imagining a mechanism competent for this purpose, it is obvious that we thus apply to the investigation of our consciousness (which is an intensive multiplicity), the concept of extension which can only apply in all its strictness to the things outside ourselves on which we are able to act. All these motor habits, functional reactions, and memory images are our duration or accumulated experience. The motor habits and those functional habitual reactions of other parts of the body Thus we simplify the stream of our consciousness. That of which we are conscious at any time is never more than a part of our crude sensation: we never perceive more than a small part of all that our organs of sense transmit to our central nervous system. But even these chosen perceptions of the external world are so rich, so chaotic and confused, that we are unable to attend to them all at once and we therefore “skeletonise” the contents of our consciousness. We think about it a bit at a time. It is an unitary thing, unable to be broken up, but we look at it from a great number of different points of view, so to speak; and then, fixing our attention on some aspect of it, we agree to ignore all the rest. We thus detach parts of it from the rest and, having thus arbitrarily decomposed it, we call these separate aspects the elements of our perceptions, and confer upon them separate existence The universe, that is, all that is given to us, presents itself as immediately perceived phenomena which are then conceptually transformed. It is an aggregate of things—gross matter, particles, molecules, atoms, and electrons. These things have separate existence and shape, so that each of them lies outside all other things—we apply to them the category of extension. They possess properties—that is, they are hard, or heavy, or hot, or cold, or they are coloured, or they smell, and so on—we thus apply to them the category of inherence. They are not things that are immutable, for they change in place, or are transformed in other ways, that is, they are acted upon by energies. But beneath the properties of the things, or the transformations that they undergo, we imagine something that has properties and which transforms: it is not convenient that we speak solely of attributes or transformations as entities in themselves, for we think of things as Has this universe that we construct from the data of sensation objective reality? We are led quite naturally by our study of physiology to the notion of idealism. We see that our perception of things, that is, our knowledge of the universe, depends on the integrity of functioning of certain bodily structures, and upon the condition that in men in general this integrity of functioning is normal, that is, common to the great majority of mankind. To say that a thing exists is to say that it is perceived in some way; that immediately or remotely it affects our state of consciousness. To say that the star Sirius exists is to say that the stimulation of the retina by a minute spot of light transmits certain molecular disturbances along the optic nerve, and that other molecular disturbances are set up in the tissues of the central nervous system. Even if we do not see those dark stars that we know to exist, there are still evidences of their being that in some way affect the instruments of the astronomer and lead to their being perceived. Even if we do not actually see the emanations from a radio-active substance, we can cause these emanations to produce changes in something that we can see. We speak of the star as a minute spot of coloured light. But if we are short-sighted the spot becomes a little flare, and if we are colour-blind the hue of the star is different from what it is to normal persons. If we put a drop of atropine into one eye and then close the other, objects appear to lose their distinctness, but if we close this eye and then open the other, the original sharpness of vision returns. When we are bilious, wisps and spots may appear on a sheet of white paper that at other times was blank. If we take an overdose of quinine, Our perception of the universe, therefore, depends on the normal functioning of our organs of sense, that is, such modes of functioning as we can describe and communicate to others, and which are thus common to the majority of other men and women. These perceptions resulting from the normal functioning of the organs of sense constitute givenness, and we enlarge, or conceptualise this givenness and call it the subject matter of science. But what is this reality that we say is external to us? It is, we see, our inner consciousness. If we walk along a road in the dark we can feel what is the nature of the path on which we tread, whether stones or gravel, or sand or grass. But this feeling is obviously not in the soles of our boots, and neither is it in the skin of the feet, for we should feel nothing if the afferent nerves in the legs were severed. Is it then in the brain? It would appear to be there, but it disappears if certain tracts in the brain are injured. All that we can say is that the appearance of reality of things outside ourselves is only the ever-changing condition of our consciousness. This is all that we immediately know, and if we say that there is an universe external to ourselves we thus project outside our own minds what is in them; and we construct an environment which may or may not exist, but which we have no right to say does exist. A philosophy based on the science of the organism would appear to be Some such system of idealism must generally characterise a system of philosophy founded on pure reasoning. We cannot but feel that the universe that we construct is one that depends on our perceptions: it is our perceptions. The essence of a thing is that it is perceived. If there were no mind to perceive it, would it exist? The universe is our thought, and we, that is our thought, exist only in the Thought of an absolute Mind which we call God. Such is the metaphysics to which the study of sensation led Berkeley. The metaphysics of science has taken another turn. It is true that men and women see something outside themselves which differs slightly in different individuals—these differences are due to what we call the “personal equation.” The image of the universe seen by some individuals may differ profoundly from the image seen by some others, or most others; but a well- The materialism of the twentieth century, like the idealism of Berkeley, thus finds that there is something outside our own consciousness that possesses absolute existence. To the materialist it is the ether of space, and to Berkeley it is the existence of absolute Mind. But if our desire to avoid metaphysics is a genuine one, we must reject the notion of the universal ether no less than we must reject the notion of an absolute Mind, and we must rest content with pure phenomenalism. For each of us there can be no existence except that which is perceived or conceptualised. There is nothing but our own consciousness; there cannot even be an Ego which perceives; there is only perception. We never do really believe this in spite of our professions of reason. We find on strict self-analysis that we believe that there is an Ego that perceives and Even if we do surrender ourselves to phenomenalism and try to believe that all that exists is our own consciousness, the fact of our duration would suggest to us that this present consciousness is not all. Our reality is not only that which is present in our minds now, but all that was ever present in our mind. All that we have ever thought and done persists and forms our conscious and unconscious experience. This past of ours is something that is ever being added to, or becoming incorporated with, our present state of consciousness; and if it is something other than that which we now perceive and conceptualise, it is something that has an existence of its own. We must believe that there is something that we perceive, and not that we merely perceive. For the phases of our immediate givenness, that is, those things which were present in our minds from moment to Above all, we have the conviction of absoluteness in our sense of personal identity. We, that is our Ego, are something that endures, and we can trace no beginning to our identity, and we have no intuition that it will cease to exist. Our Ego is now the same Ego that it was in the past, and round it something has accumulated—the memories of our former perceptions, and the habits that these have engendered. Did our Ego create this from itself? Was it not rather a centre of action which, residing in an existence other than itself—the absolute which we call the universe—modified that existence and continually acquired new relationships to it? |