CHAPTER XI.

Previous

HELICOPTER MODELS.

§ 1. There is no difficulty whatever about making successful model helicopters, whatever there may be about full-sized machines.

§ 2. The earliest flying models were helicopters. As early as 1796 Sir George Cayley constructed a perfectly successful helicopter model (see ch. iii.); it should be noticed the screws were superimposed and rotated in opposite directions.

§ 3. In 1842 a Mr. Phillips constructed a successful power-driven model helicopter. The model was made entirely of metal, and when complete and charged weighed 2 lb. It consisted of a boiler or steam generator and four fans supported between eight arms. The fans had an inclination to the horizon of 20°, and through the arms the steam rushed on the principle of Hero's engines (Barker's Mill Principle probably). By the escape of steam from the arms the fans were caused to revolve with immense energy, so much so that the model rose to an immense altitude and flew across two fields before it alighted. The motive power employed was obtained from the combustion of charcoal, nitre and gypsum, as used in the original fire annihilator; the products of combustion mixing with water in the boiler and forming gas-charged steam, which was delivered at high pressure from the extremities of the eight arms.[47] This model and its flight (fully authenticated) is full of interest and should not be lost sight of, as in all probability being the first model actuated by steam which actually flew.

The helicopter is but a particular phase of the aeroplane.

§ 4. The simplest form of helicopter is that in which the torque of the propeller is resisted by a vertical loose fabric plane, so designed as itself to form a propeller, rotating in the opposite direction. These little toys can be bought at any good toy shop from about 6d. to 1s. Supposing we desire to construct a helicopter of a more ambitious and scientific character, possessing a vertically rotating propeller or propellers for horizontal propulsion, as well as horizontally rotating propellers for lifting purposes.

§ 5. There is one essential point that must be carefully attended to, and that is, that the horizontal propulsive thrust must be in the same plane as the vertical lift, or the only effect will be to cause our model to turn somersaults. I speak from experience.

When the horizontally revolving propellers are driven in a horizontal direction their "lifting" powers will be materially increased, as they will (like an ordinary aeroplane) be advancing on to fresh undisturbed air.

§ 6. I have not for ordinary purposes advocated very light weight wire framework fabric-covered screws, but in a case like this where the thrust from the propeller has to be more than the total weight of the machine, these might possibly be used with advantage.

§ 7. Instead of using two long vertical rods as well as one long horizontal one for the rubber strands, we might dispense with the two vertical ones altogether and use light gearing to turn the torque action through a right angle for the lifting screws, and use three separate horizontal rubber strands for the three propellers on a suitable light horizontal framework. Such should result in a considerable saving of weight.


Fig. 52.—Correct Manner.
A, B, C = Screws.

§ 8. The model would require something in the nature of a vertical fin or keel to give the sense of direction. Four propellers, two for "lift" and two for "drift," would undoubtedly be a better arrangement.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page