THE HELIOMETER

Previous

Astronomical discoveries are always received by the public with keen interest. Every new fact read in the great open book of nature is written eagerly into the books of men. For there exists a strong curiosity to ascertain just how the greater world is built and governed; and it must be admitted that astronomers have been able to satisfy that curiosity with no small measure of success. But it is seldom that we hear of the means by which the latest and most refined astronomical observations are effected. Popular imagination pictures the astronomer, as he doubtless once was, an aged gentleman, usually having a long white beard, and spending entire nights staring at the sky through a telescope.

But the facts to-day are very different. The working astronomer is an active man in the prime of life, often a young man. He wastes no time in star-gazing. His observations consist of exact measurements made in a precise, systematic, and almost business-like manner. A night's "watch" at the telescope is seldom allowed to exceed about three hours, since it is found that more continued exertions fatigue the eye and lead to less accurate results. To this, of course, there have been many notable exceptions, for endurance of sight, like any form of physical strength, differs greatly in different individuals. Astronomical research does not include "picking out" the constellations, and learning the Arabic names of individual stars. These things are not without interest; but they belong to astronomy's ancient history, and are of little value except to afford amusement and instruction to successive generations of amateurs.

Among the instruments for carefully planned measurements of precision the heliometer probably takes first rank. It is at once the most exquisitely accurate in its results, and the most fatiguing to the observer, of all the varied apparatus employed by the astronomer. The principle upon which its construction depends is very peculiar, and applies to all telescopes, even ordinary ones for terrestrial purposes. If part of a telescope lens be covered up with the hand, it will still be possible to see through the instrument. The glass lens at the end of the tube farthest from the observer's eye helps to magnify distant objects and make them seem nearer by gathering to a single point, or focus, a greater amount of their light than could be brought together by the far smaller lens in the unaided eye.

The telescope might very properly be likened to an enlarged eye, which can see more than we can, simply because it is bigger. If a telescope lens has a surface one hundred times as large as that of the lens in our eye, it will gather and bring to a focus one hundred times as much light from a distant object. Now, if any part of this telescope be covered, the remaining part will, nevertheless, gather and focus light just as though the whole lens were in action; only, there will be less light collected at the focus within the tube. The small lens at the telescope's eye-end is simply a magnifier to help our eye examine the image of any distant object formed at the focus by the large lens at the farther end of the instrument. For of this simple character is the operation of any telescope: the large glass lens at one end collects a distant planet's light, and brings it to a focus near the other end of the tube, where it forms a tiny picture of the planet, which, in turn, is examined with the little magnifier at the eye-end.

Having arrived at the fundamental principle that part of a lens will act in a manner similar to a whole one, it is easy to explain the construction of a heliometer. An ordinary telescope lens is sawed in half by means of a thin round metal disk revolved rapidly by machinery, and fed continually with emery and water at its edge. The cutting effect of emery is sufficient to make such a disk enter glass much as an ordinary saw penetrates wood. The two "semi-lenses," as they are called, are then mounted separately in metal holders. These are attached to one end of the heliometer, called the "head," in such a way that the two semi-lenses can slide side by side upon metal guides. This head is then fastened to one end of a telescope tube mounted in the usual way. The "head" end of the instrument is turned toward the sky in observing, and at the eye-end is placed the usual little magnifier we have already described.

The observer at the eye-end has control of certain rods by means of which he can push the semi-lenses on their slides in the head at the other end of the tube. Now, if he moves the semi-lenses so as to bring them side by side exactly, the whole arrangement will act like an ordinary telescope. For the semi-lenses will then fit together just as if the original glass had never been cut. But if the half-lenses are separated a little on their slides, each will act by itself. Being slightly separated, each will cover a different part of the sky. The whole affair acts as if the observer at the eye-end were looking through two telescopes at once. For each semi-lens acts independently, just as if it were a complete glass of only half the size.

Now, suppose there were a couple of stars in the sky, one in the part covered by the first semi-lens, and one in the part covered by the second. The observer would, of course, see both stars at once upon looking into the little magnifier at the eye-end of the heliometer.

We must remember that these stars will appear in the field of view simply as two tiny points of light. The astronomer, as we have said, is provided with a simple system of long rods, by means of which he can manipulate the semi-lenses while the observation is being made. If he slides them very slowly one way or the other, the two star-points in the field of view will be seen to approach each other. In this way they can at last be brought so near together that they will form but a single dot of light. Observation with the heliometer consists in thus bringing two star-images together, until at last they are superimposed one upon the other, and we see one image only. Means are provided by which it is then possible to measure the amount of separation of the two half-lenses. Evidently the farther asunder on the sky are the two stars under observation, the greater will be the separation of the semi-lenses necessary to make a single image of their light. Thus, measurement of the lenses' separation becomes a means of determining the separation of the stars themselves upon the sky.

The two slides in the heliometer head are supplied with a pair of very delicate measures or "scales" usually made of silver. These can be examined from the eye-end of the instrument by looking through a long microscope provided for this special purpose. Thus an extremely precise value is obtained both of the separation of the sliders and of the distance on the sky between the stars under examination. Measures made in this way with the heliometer are counted the most precise of astronomical observations.

Having thus described briefly the kind of observations obtained with the heliometer, we shall now touch upon their further utilization. We shall take as an example but one of their many uses—that one which astronomers consider the most important—the measurement of stellar distances. (See also p. 94.)

Even the nearest fixed star is almost inconceivably remote from us. And astronomers are imprisoned on this little earth; we cannot bridge the profound distance separating us from the stars, so as to use direct measurement with tape-line or surveyor's chain. We are forced to have recourse to some indirect method. Suppose a certain star is suspected, on account of its brightness, or for some other reason, of being near us in space, and so giving a favorable opportunity for a determination of distance. A couple of very faint stars are selected close by. These, on account of their faintness, the astronomer may regard as quite immeasurably far away. He then determines with his heliometer the exact position on the sky of the bright star with respect to the pair of faint ones. Half a year is then allowed to pass. During that time the earth has been swinging along in its annual path or orbit around the sun. Half a year will have sufficed to carry the observer on the earth to the other side of that path, and he is then 185,000,000 miles away from his position at the first observation.

Another determination is made of the bright star's position as referred to the two faint ones. Now, if all these stars were equally distant, their relative positions at the second observation would be just the same as at the former one. But if, as is very probable, the bright star is very much nearer us than are the two faint ones, we shall obtain a different position from our second observation. For the change of 185,000,000 miles in the observer's location will, of course, affect the direction in which we see the near star, while it will leave the distant ones practically unchanged. Without entering into technical details, we may say that from a large number of observations of this kind, we can obtain the distance of the bright star by a process of calculation. The only essential is to have an instrument that can make the actual observations of position accurately enough; and in this respect the heliometer is still unexcelled.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page