THE ASTRONOMER'S POLE

Previous

The pole of the frozen North is not the only pole sought with determined effort by more than one generation of scientific men. Up in the sky astronomers have another pole which they are following up just as vigorously as ever Arctic explorer struggled toward the difficult goal of his terrestrial journeying. The celestial pole is, indeed, a fundamentally important thing in astronomical science, and the determination of its exact position upon the sky has always engaged the closest attention of astronomers. Quite recently new methods of research have been brought to bear, promising a degree of success not hitherto attained in the astronomers' pursuit of their pole.

In the first place, we must explain what is meant by the celestial pole. We have already mentioned the poles of the earth (p. 136). Our planet turns once daily upon an axis passing through its centre, and it is this rotation that causes all the so-called diurnal phenomena of the heavens. Rising and setting of sun, moon, and stars are simply results of this turning of the earth. Heavenly bodies do not really rise; it is merely the man on the earth who is turned round on an axis until he is brought into a position from which he can see them. The terrestrial poles are those two points on the earth's surface where it is pierced by the rotation axis of the planet. Now we can, if we choose, imagine this axis lengthened out indefinitely, further and further, until at last it reaches the great round vault of the sky. Here it will again pierce out two polar points; and these are the celestial poles.

The whole thing is thus quite easy to understand. On the sky the poles are marked by the prolongation of the earth's axis, just as on the earth the poles are marked by the axis itself. And this explains at once why the stars seem nightly to revolve about the pole. If the observer is being turned round the earth's axis, of course it will appear to him as if the stars were rotating around the same axis in the opposite direction, just as houses and fields seem to fly past a person sitting in a railway train, unless he stops to remember that it is really himself who is in motion, and not the trees and houses.

The existence of such a centre of daily motions among the stars once recognized, it becomes of interest to ascertain whether the centre itself always retains precisely the same position in the sky. It was discovered as early as the time of Hipparchus (p. 39) that such is not the case, and that the celestial pole is subject to a slow motion among the stars on the sky. If a given star were to-day situated exactly at the pole, it would no longer be there after the lapse of a year's time; for the pole would have moved away from it.

This motion of the pole is called precession. It means that certain forces are continually at work, compelling the earth's axis to change its position, so that the prolongation of that axis must pierce the sky at a point which moves as time goes on. These forces are produced by the gravitational attractions of the sun, moon, and planets upon the matter composing our earth. If the earth were perfectly spherical in shape, the attractions of the other heavenly bodies would not affect the direction of the earth's rotation-axis in the least. But the earth is not quite globular in form; it is flattened a little at the poles and bulges out somewhat at the equator. (See p. 135.)

This protuberant matter near the equator gives the other bodies in the solar system an opportunity to disturb the earth's rotation. The general effect of all these attractions is to make the celestial pole move upon the sky in a circle having a radius of about 23½ degrees; and it requires 25,800 years to complete a circuit of this precessional cycle. One of the most striking consequences of this motion will be the change of the polar star. Just at present the bright star Polaris in the constellation of the Little Bear is very close to the pole. But after the lapse of sufficient ages the first-magnitude star Vega of the constellation Lyra will in its turn become Guardian of the Pole.

It must not be supposed, however, that the motion of the pole proceeds quite uniformly, and in an exact circle; the varying positions of the heavenly bodies whose attractions cause the phenomena in question are such as to produce appreciable divergencies from exact circular motion. Sometimes the pole deviates a little to one side of the precessional circle, and sometimes it deviates on the other side. The final result is a sort of wavy line, half on one side and half on the other of an average circular curve. It takes only nineteen years to complete one of these little waves of polar motion, so that in the whole precessional cycle of 25,800 years there are about 1,400 indentations. This disturbance of the polar motion is called by astronomers nutation.

The first step in a study of polar motion is to devise a method of finding just where the pole is on any given date. If the astronomer can ascertain by observational processes just where the pole is among the stars at any moment, and can repeat his observations year after year and generation after generation, he will possess in time a complete chart of a small portion at least of the celestial pole's vast orbit. From this he can obtain necessary data for a study of the mathematical theory of attractions, and thus, perhaps, arrive at an explanation of the fundamental laws governing the universe in which we live.

The instrument which has been used most extensively for the study of these problems is the transit (p. 118) or the "meridian circle." This latter consists of a telescope firmly attached to a metallic axis about which it can turn. The axis itself rests on massive stone supports, and is so placed that it points as nearly as possible in an east-and-west direction. Consequently, when the telescope is turned about its axis, it will trace out on the sky a great circle (the meridian) which passes through the north and south points of the horizon and the point directly overhead. The instrument has also a metallic circle very firmly fastened to the telescope and its axis. Let into the surface of this circle is a silver disk upon which are engraved a series of lines or graduations by means of which it is possible to measure angles.

Observers with the meridian circle begin by noting the exact instant when any given star passes the centre of the field of view of the telescope. This centre is marked with a cross made by fastening into the focus some pieces of ordinary spider's web, which give a well-marked, delicate set of lines, even under the magnifying power of the telescope's eye-piece. In addition to thus noting the time when the star crosses the field of the telescope, the astronomer can measure by means of the circle, how high up it was in the sky at the instant when it was thus observed.

If the telescope of the meridian circle be turned toward the north, and we observe stars close to the pole, it is possible to make two different observations of the same star. For the close polar stars revolve in such small circles around the pole of the heavens that we can observe them when they are on the meridian either above the pole or below it. Double observations of this class enable us to obtain the elevation of the pole above the horizon, and to fix its position with respect to the stars.

Now, there is one very serious objection to this method. In order to secure the two necessary observations of the same star, it is essential to be stationed at the instrument at two moments of time separated by exactly twelve hours; and if one of the observations occurs in the night, the other corresponding observation will occur in daylight.

It is a fact not generally known that the brighter stars can be seen with a telescope, even when the sun is quite high above the horizon. Unfortunately, however, there is only one star close to the pole which is bright enough to be thus observed in daylight—the polar star already mentioned under the name Polaris. The fact that we are thus limited to observations of a single star has made it difficult even for generations of astronomers to accumulate with the meridian circle a very large quantity of observational material suitable for the solution of our problem.

The new method of observation to which we have referred above consists in an application of photography to the polar problem. If we aim at the pole a powerful photographic telescope, and expose a photographic plate throughout the entire night, we shall find that all stars coming within the range of the plate will mark out little circles or "trails" upon the developed negative. It is evident that as the stars revolve about the pole on the sky, tracing out their daily circular orbits, these same little circles must be reproduced faithfully upon the photographic plate. The only condition is that the stars shall be bright enough to make their light affect the sensitive gelatine surface.

But even if observations of this kind are continued throughout all the hours of darkness, we do not obtain complete circles, but only those portions of circles traced out on the sky between sunset and sunrise. If the night is twelve hours in length, we get half-circles on the plate; if it is eighteen hours long, we get circles that lack only one-quarter of being complete. In other words, we get a series of circular arcs, one corresponding to each close polar star. There are no fewer than sixteen stars near enough to the pole to come within the range of a photographic plate, and bright enough to cause measurable impressions upon the sensitive surface. The fact that the circular arcs are not complete circles does not in the least prevent our using them for ascertaining the position of their common centre; and that centre is the pole. Moreover, as the arcs are distributed at all sorts of distances from the pole and in all directions, corresponding to the accidental positions of the stars on the sky, we have a state of affairs extremely favorable to the accurate determination of the pole's place among the stars by means of microscopic measurements of the plate.

It will be perceived that this method is extremely simple, and, therefore, likely to be successful; though its simplicity is slightly impaired by the phenomenon known to astronomers as "atmospheric refraction." The rays of light coming down to our telescopes from a distant star must pass through the earth's atmosphere before they reach us; and in passing thus from the nothingness of outer space into the denser material of the air, they are bent out of their straight course. The phenomenon is analogous to what we see when we push a stick down through the surface of still water; we notice that the stick appears to be bent at the point where it pierces the surface of the water; and in just the same way the rays of light are bent when they pierce into the air. Fortunately, the mathematical theory of this atmospheric bending of light is well understood, so that it is possible to remove the effects of refraction from our results by a process of calculation. In other words, we can transform our photographic measures into what they would have been if no such thing as atmospheric refraction existed. This having been done, all the arcs on the plate should be exactly circular, and their common centre should be the position of the pole among the stars on the night when the photograph was made.

It is possible to facilitate the removal of refraction effects very much by placing our photographic telescope at some point on the earth situated in a very high latitude. The elevation of the pole above the horizon is greatest in high latitudes. Indeed, if Arctic voyagers could ever reach the pole of the earth they would see the pole of the heavens directly overhead. Now, the higher up the pole is in the sky, the less will be the effects of atmospheric refraction; for the rays of light will then strike the atmosphere in a direction nearly perpendicular to its surface, which is favorable to diminishing the amount of bending.

There is also another very important advantage in placing the telescope in a high latitude; in the middle of winter the nights are very long there; if we could get within the Arctic. Circle itself, there would be nights when the hours of darkness would number twenty-four, and we could substitute complete circles for our broken arcs. This would, indeed, be most favorable from the astronomical point of view; but the essential condition of convenience for the observer renders an expedition to the frozen Arctic regions unadvisable.

But it is at least possible to place the telescope as far north as is consistent with retaining it within the sphere of civilized influences. We can put it in that one of existing observatories on the earth which has the highest latitude; and this is the observatory of Helsingfors, in Finland, which belongs to a great university, is manned by competent astronomers, and has a latitude greater than 60 degrees.

Dr. Anders Donner, Director of the Helsingfors Observatory, has at its disposal a fine photographic telescope, and with this some preliminary experimental "trail" photographs were made in 1895. These photographs were sent to Columbia University, New York, and were there measured under the writer's direction. Calculations based on these measures indicate that the method is promising in a very high degree; and it was, therefore, decided to construct a special photographic telescope better adapted to the particular needs of the problem in hand.

The desirability of a new telescope arises from the fact that we wish the instrument to remain absolutely unmoved during all the successive hours of the photographic exposure. It is clear that if the telescope moves while the stars are tracing out their little trails on the plate, the circularity of the curves will be disturbed. Now, ordinary astronomical telescopes are always mounted upon very stable foundations, well adapted to making the telescope stand still; but the polar telescope which we wish to use in a research fundamental to the entire science of astronomy ought to possess immobility and stability of an order higher than that required for ordinary astronomical purposes.

It is a remarkable peculiarity of the instrument needed for the new trail photographs that it is never moved at all. Once pointed at the pole, it is ready for all the observations of successive generations of astronomers. It should have no machinery, no pivots, axes, circles, clocks, or other paraphernalia of the usual equatorial telescope. All we want is a very heavy stone pier, with a telescope tube firmly fastened to it throughout its entire length. The top of the pier having been cut to the proper angle of the pole's elevation, and the telescope cemented down, everything is complete from the instrumental side; and just such an instrument as this is now ready for use at Helsingfors.

The late Miss Catharine Wolfe Bruce, of New York, was much interested in the writer's proposed polar investigations, and in October, 1898, she contributed funds for the construction of the new telescope, and the Russian authorities have generously undertaken the expense of a building to hold the instrument and the granite foundation upon which it rests. Photographs are now being secured with the new instrument, and they will be sent to Columbia University, New York, for measurement and discussion. It is hoped that they will carry out the promise of the preliminary photographs made in 1895 with a less suitable telescope of the ordinary form.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page