SATURN'S RINGS

Previous

The death of James E. Keeler, Director of the Lick Observatory, in California (p. 32), recalls to mind one of the most interesting and significant of later advances in astronomical science. Only seven years have elapsed since Keeler made the remarkable spectroscopic observations which gave for the first time an ocular demonstration of the true character of those mysterious luminous rings surrounding the brilliant planet Saturn. His results have not yet been made sufficiently accessible to the public at large, nor have they been generally valued at their true worth. We consider this work of Keeler's interesting, because the problem of the rings has been a classic one for many generations; and we have been particular, also, to call it significant, because it is pregnant with the possibilities of newer methods of spectroscopic research, applied in the older departments of observational astronomy.

The troubles of astronomers with the rings began with the invention of the telescope itself. They date back to 1610, when Galileo first turned his new instrument to the heavens (p. 49). It may be imagined easily that the bright planet Saturn was among the very first objects scrutinized by him. His "powerful" instrument magnified only about thirty times, and was, doubtless, much inferior to our pocket telescopes of to-day. But it showed, at all events, that something was wrong with Saturn. Galileo put it, "Ultimam planet am tergeminam observavi" ("I have observed the furthest planet to be triple").

It is easy to understand now how Galileo's eyes deceived him. For a round luminous ball like Saturn, surrounded by a thin flat ring seen nearly edgewise, really looks as if it had two little attached appendages. Strange, indeed, it is to-day to read a scientific book so old that the planet Saturn could be called the "furthest" planet. But it was the outermost known in Galileo's day, and for nearly two centuries afterward. Not until 1781 did William Herschel discover Uranus (p. 59); and Neptune was not disclosed by the marvellous mathematical perception of Le Verrier until 1846 (p. 61).

Galileo's further observations of Saturn bothered him more and more. The planet's behavior became much worse as time went on. "Has Saturn devoured his children, according to the old legend?" he inquired soon afterward; for the changed positions of earth and planet in the course of their motions around the sun in their respective orbits had become such that the ring was seen quite edgewise, and was, therefore, perfectly invisible to Galileo's "optic tube." The puzzle remained unsolved by Galileo; it was left for another great man to find the true answer. Huygens, in 1656, first announced that the ring is a ring.

The manner in which this announcement was made is characteristic of the time; to-day it seems almost ludicrous. Huygens published a little pamphlet in 1656 called "De Saturni Luna Observatio Nova" or, "A New Observation of Saturn's Moon." He gave the explanation of what had been observed by himself and preceding astronomers in the form of a puzzle, or "logogriph." Here is what he had to say of the phenomenon in question:

"aaaaaaa ccccc d eeeee g h iiiiiii llll mm nnnnnnnnn oooo pp q rr s ttttt uuuuu."

It was not until 1659, three years later, in a book entitled "Systema Saturnium," that Huygens rearranged the above letters in their proper order, giving the Latin sentence:

"Annulo cingitur, tenui plano, nusquam cohaerente, ad eclipticam inclinato." Translated into English, this sentence informs us that the planet "is girdled with a thin, flat ring, nowhere touching Saturn, and inclined to the ecliptic"!

This was a perfectly correct and wonderfully sagacious explanation of those complex and exasperatingly puzzling phenomena that had been too difficult for no less a person than Galileo himself. It was an explanation that explained. The reason for its preliminary announcement in the above manner must have been the following: Huygens was probably not quite sure of his ground in 1656, while three years afterward he had become quite certain. By the publication of the logogriph of 1656 he secured for himself the credit of what he had done. If any other astronomer had published the true explanation after 1656, Huygens could have proved his claim to priority by rearranging the letters of his puzzle. On the other hand, if further researches showed him that he was wrong, he would never have made known the true meaning of his logogriph, and would thus have escaped the ignominy of making an erroneous explanation. Thus, the method of announcement was comparable in ingenuity with the Huygenian explanation itself.

We are compelled to pass over briefly the entertaining history of subsequent observations of the ring, in order to explain the new work of Keeler and others. Cassini, about 1675, been able to show that the ring was double; that there are really two independent rings, with a distinct dark space between them. It was a case of wheels within wheels. To our own eminent countryman, W. C. Bond, of Cambridge, Mass., we owe the further discovery (Harvard College Observatory, November, 1850) of the third ring. This is also concentric with the other two, and interior to them, but difficult to observe, because of its much smaller luminosity.

It is almost transparent, and the brilliant light of the planet's central ball is capable of shining directly through it. For this reason the inner ring is called the "gauze" or "crape" ring. If we add to the above details the fact that our modern large telescopes show slight irregularities in the surface of the rings, especially when seen edgewise, we have a brief statement of all that the telescope has been able to reveal to us since Galileo's time.

But of far greater interest than the mere fact of their existence is the important cosmic question as to the constitution, structure, and, above all, durability of the ring system. Astronomers often use the term "stability" with regard to celestial systems like the ring system of Saturn. By this they mean permanent durability. A system is stable if its various parts can continue in their present relationship to one another, without violating any of the known laws of astronomy. Whenever we study any collection of celestial objects, and endeavor to explain their motions and peculiarities, we always seek some explanation not inconsistent with the continued existence of the phenomena in question. For this there is, perhaps, no sufficient philosophical basis. Probably much of the great celestial procession is but a passing show, to be but for a moment in the endless vista of cosmic time.

However this may be, we are bound to assume as a working theory that Saturn has always had these rings, and will always have them; and it is for us to find out how this is possible. The problem has been attacked mathematically by various astronomers, including Laplace; but no conclusive mathematical treatment was obtained until 1857, when James Clerk Maxwell proved in a masterly manner that the rings could be neither solid nor liquid. He showed, indeed, that they would not last if they were continuous bodies like the planets. A big solid wheel would inevitably be torn asunder by any slight disturbance, and then precipitated upon the planet's surface. Therefore, the rings must be composed of an immense number of small detached particles, revolving around Saturn in separate orbits, like so many tiny satellites.

This mathematical theory of the ring system being once established, astronomers were more eager than ever to obtain a visual confirmation of it. We had, indeed, a sort of analogy in the assemblage of so-called "minor planets" (p. 64), which are known to be revolving around our sun in orbits situated between Mars and Jupiter. Some hundreds of these are known to exist, and probably there are countless others too small for us to see. Such a swarm of tiny particles of luminous matter would certainly give the impression of a continuous solid body, if seen from a distance comparable to that separating us from Saturn. But arguments founded on analogy are of comparatively little value.

Astronomers need direct and conclusive telescopic evidence, and this was lacking until Keeler made his remarkable spectroscopic observation in 1895. The spectroscope is a peculiar instrument, different in principle from any other used in astronomy; we study distant objects with it by analyzing the light they send us, rather than by examining and measuring the details of their visible surfaces. The reader will recall that according to the modern undulatory theory, light consists simply of a series of waves. Now, the nature of waves is very far from being understood in the popular mind. Most people, for instance, think that the waves of ocean consist of great masses of water rolling along the surface.

This notion doubtless arises from the behavior of waves when they break upon the shore, forming what we call surf. When a wave meets with an immovable body like a sand beach, the wave is broken, and the water really does roll upon the beach. But this is an exceptional case. Farther away from the shore, where the waves are unimpeded, they consist simply of particles of water moving straight up and down. None of the water is carried by mere wave-action away from the point over which it was situated at first.

Tides or other causes may move the water, but not simple wave-motion alone. That this is so can be proved easily. If a chip of wood be thrown overboard from a ship at sea it will be seen to rise and fall a long time on the waves, but it will not move. Similarly, wind-waves are often quite conspicuous on a field of grain; but they are caused by the individual grain particles moving up and down. The grain certainly cannot travel over the ground, since each particle is fast to its own stalk.

But while the particles do not travel, the wave-disturbance does. At times it is transmitted to a considerable distance from the point where it was first set in motion. Thus, when a stone is dropped into still water, the disturbance (though not the water) travels in ever-widening circles, until at last it becomes too feeble for us to perceive. Light is just such a travelling wave-disturbance. Beginning, perhaps, in some distant star, it travels through space, and finally the wave impinges on our eyes like the ocean-wave breaking on a sand beach. Such a light-wave affects the eye in some mysterious way. We call it "seeing."

The spectroscope (p. 21) enables us to measure and count the waves reaching us each second from any source of light. No matter how far away the origin of stellar light may be, the spectroscope examines the character of that light, and tells us the number of waves set up every second. It is this characteristic of the instrument that has enabled us to make some of the most remarkable observations of modern times. If the distant star is approaching us in space, more light-waves per second will reach us than we should receive from the same star at rest. Thus if we find from the spectroscope that there are too many waves, we know that the star is coming nearer; and if there are too few, we can conclude with equal certainty that the star is receding.

Keeler was able to apply the spectroscope in this way to the planet Saturn and to the ring system. The observations required dexterity and observational manipulative skill in a superlative degree. These Keeler had; and this work of his will always rank as a classic observation. He found by examining the light-waves from opposite sides of the planet that the luminous ball rotated; for one side was approaching us and the other receding. This observation was, of course, in accord with the known fact of Saturn's rotation on his axis. With regard to the rings, Keeler showed in the same way the existence of an axial rotation, which appears not to have been satisfactorily proved before, strange as it may seem. But the crucial point established by his spectroscope was that the interior part of the rings rotates faster than the exterior.

The velocity of rotation diminishes gradually from the inside to the outside. This fact is absolutely inconsistent with the motion of a solid ring; but it fits in admirably with the theory of a ring comprised of a vast assemblage of small separate particles. Thus, for the first time, astronomy comes into possession of an observational determination of the nature of Saturn's rings, and Galileo's puzzle is forever solved.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page