Scarcely anyone can have watched the sky without noticing how different is the behavior of our moon from that of any other object we can see. Of course, it has this in common with the sun and stars and planets, that it rises in the eastern horizon, slowly climbs the dome of the sky, and again goes down and sets in the west. This motion of the heavenly bodies is known to be an apparent one merely, and caused by the turning of our own earth upon its axis. A man standing upon the earth's surface can look up and see above him one-half the great celestial vault, gemmed with twinkling stars, and bearing, perhaps, within its ample curve one or two serenely shining planets and the lustrous moon. But at any given moment the observer can see nothing of the other half of the heavenly sphere. It is beneath his feet, and concealed by the solid bulk of the earth. The earth, however, is turning on an axis, carrying the observer with it. And so it is continually presenting him to a new part of the sky. At any moment he sees but a single half-sphere; yet the very next instant it is no longer the same; a small portion has passed out of sight on one side by going down behind the turning earth, while a corresponding new section has come into view on the opposite side. It is this coming into view that we call the rising of a star; and the corresponding disappearance on the other side is called setting. Thus rising and setting are, of course, due entirely to a turning of the earth, and not at all to actual motions of the stars; and for this reason, all objects in the sky, without exception, must rise and set again. But the moon really has a motion of its own in addition to this apparent one caused by the earth's rotation. Somewhere in the dawn of time early watchers of the stars thought out those fancied constellations that survive even down to our own day. They placed the mighty lion, king of beasts, upon the face of night, and the great hunter, too, armed with club and dagger, to pursue him. And why does the moon ride thus through the stars of night? Modern science has succeeded in disentangling the intricacies of her motion, until to-day only one or two of the very minutest details of that motion remain unexplained. But it has been a hard problem. Someone has well said that lunar theory should be likened to a lofty cliff upon whose side the intellectual giants among men can mark off their mental stature, but whose height no one of them may ever hope to scale. But for our present purpose it is unnecessary to pursue the subject of lunar motion into its abstruser details. To understand why the moon Let us again recur to our supposed observer watching the moon night after night, so as to record the stars closely approached by her. Why should he not some time or other be surprised by an approach so close as to amount apparently to actual contact? The moon covers quite a large surface on the sky, and when we remember the nearly countless numbers of the stars, it A moment's consideration shows that this must often be the case; and in fact, if the moon's advancing edge be scrutinized carefully through a telescope, small stars can be seen frequently to disappear behind it. This is a most interesting observation. At first we see the moon and star near each other in the telescope's field of view. But the distance between them lessens perceptibly, even quickly, until at last, with a startling suddenness, the star goes out of sight behind the moon. After a time, ranging from a few moments to, perhaps, more than an hour, the moon will pass, and we can see the star suddenly reappear from behind the other edge. These interesting observations, while not at all uncommon, can be made only very rarely by naked-eye astronomers. The reason is simple. The moon's light is so brilliant that it fairly overcomes the stars whenever they are at all near, except in the case of very bright ones. Small stars that can be followed quite easily up to the moon's edge in a good telescope, disappear from Up to this point we have considered occultations chiefly as being of interest to the naked-eye astronomer. Yet occultations have a real scientific value. It is by their means that we can, perhaps, best measure the moon's size. By noting with a telescope the time of disappearance and reappearance of known stars, astronomers can bring the direct measurement of the moon's diameter within the range of their numerical cal There is another thing of scientific interest about occultations, though it has lost some of its importance in recent years. When such an event has been observed, the agreement of the predicted time with that actually recorded by the astronomer offers a most searching test of the correctness of our theory of lunar motion. We have already called attention to the great inherent difficulty of this theory. It is easy to see that by noting the exact instant of disappearance of a star at a place on the earth the latitude and longitude of which are known, we can both check our calculations and gather material for improving our theory. The same principle can be used also in the converse direction. Within the limits of precision imposed by the state of our knowledge of lunar theory, we can utilize occultations to help determine the position on the On March 28, 1810, Mr. Pitkin, of Connecticut, reported to the House of Representatives on "laying a foundation for the establishment of a first meridian for the United States, by which a further dependence on Great Britain or any other foreign nation for such meridian may be entirely removed." This report was the result of a memorial presented by one William Lambert, who had deduced the longitude of the Capitol from an occultation observed October 20, 1804. Various proceedings were had in Congress and in committee, until at last, in 1821, Lambert was appointed "to make astronomical observations by lunar occultations of fixed stars, solar eclipses, or any approved method adapted to ascertain the longitude of the Capitol from Greenwich." Lambert's reports were made in 1822 and 1823, but ten years passed before the |