The progress of science is made up of a vast succession of hypotheses. The majority die in early infancy. A few live and are for a time widely accepted. Then some new hypothesis either destroys them completely or shows that, while they contain elements of truth, they are not the whole truth. In the previous chapter we have discussed a group of hypotheses of this kind, and have tried to point out fairly their degree of truth so far as it can yet be determined. In this chapter we shall outline still another hypothesis, the relation of which to present climatic conditions has been fully developed in Earth and Sun; while its relation to the past will be explained in the present volume. This hypothesis is not supposed to supersede the others, for so far as they are true they cannot be superseded. It merely seems to explain some of the many conditions which the other hypotheses apparently fail to explain. To suppose that it will suffer a fate more glorious than its predecessors would be presumptuous. The best that can be hoped is that after it has been pruned, enriched, and modified, it may take its place among the steps which finally lead to the goal of truth. In this chapter the new hypothesis will be sketched in broad outline in order that in the rest of this book the reader may appreciate the bearing of all that is said. Details of proof and methods of work will be omitted, Without further explanation let us turn to our main problem. In the realm of climatology the most important discovery of the last generation is that variations in the weather depend on variations in the activity of the sun's atmosphere. The work of the great astronomer, Newcomb, and that of the great climatologist, KÖppen, have shown beyond question that the temperature of the earth's surface varies in harmony with variations in the number and area of sunspots.[15] The work of Abbot has shown that the amount of heat radiated from the sun also varies, and that in general the variations correspond with those of the sunspots, although there are exceptions, especially when the spots are fewest. Here, however, there at once arises a puzzling paradox. The earth certainly Another large group of investigators have shown that atmospheric pressure also varies in harmony with the number of sunspots. Some parts of the earth's surface have one kind of variation at times of many sunspots and other parts the reverse. These differences are systematic and depend largely on whether the region in question happens to have high atmospheric pressure or low. The net result is that when sunspots are numerous the earth's storminess increases, and the atmosphere is thrown into commotion. This interferes with the stable planetary winds, such as the trades of low latitudes and the prevailing westerlies of higher latitudes. Instead of these regular winds and the fair weather which they bring, there is a tendency toward frequent tropical hurricanes in the lower latitudes and toward more frequent and severe storms of the ordinary type in the latitudes where the world's most progressive nations now live. With the change in storminess there naturally goes a change in rainfall. Not all parts of the world, however, have increased storminess and more abundant rainfall when sunspots are numerous. Some parts change in the opposite way. Thus when the sun's atmosphere is particularly disturbed, the contrasts between different parts of the earth's surface are increased. For example, the northern United States and southern Canada become more stormy and rainy, as appears in Fig. 2, and the same is true of the Southwest and along the south Atlantic coast. In a crescent-shaped central area, however, Fig. 2. Storminess of sunspot maxima vs. minima. Based on nine years' nearest sunspot minima and nine years' nearest sunspot maxima in the three sunspot cycles from 1888 to 1918. Heavy shading indicates excess of storminess when sunspots are numerous. Figures indicate average yearly number of storms by which years of maximum sunspots exceed those of minimum sunspots. The two controlling factors of any climate are the temperature and the atmospheric pressure, for they determine the winds, the storms, and thus the rainfall. A study of the temperature seems to show that the peculiar paradox of a hot sun and a cool earth is due largely to the increased storminess during times of many sunspots. The earth's surface is heated by the rays of the sun, but There has been much discussion as to why storms are numerous when the sun's atmosphere is disturbed. Many investigators have supposed it was due entirely and directly to the heating of the earth's surface by the sun. This, however, needs modification for several reasons. In the first place, recent investigations show that in a great many cases changes in barometric pressure precede changes in temperature and apparently cause them by altering the winds and producing storms. This is the opposite of what would happen if the effect of solar heat upon the earth's surface were the only agency. In the second place, if storms were due exclusively to variations in the ordinary solar radiation which comes to the earth as light and is converted into heat, the solar effect ought The search for this auxiliary agency raises many difficult questions which cannot yet be answered. On the whole the weight of evidence suggests that electrical phenomena of some kind are involved, although variations in the amount of ultra-violet light may also be important. Many investigators have shown that the sun emits electrons. Hale has proved that the sun, like the earth, is magnetized. Sunspots also have magnetic fields the strength of which is often fifty times as great as that of the sun as a whole. If electrons are sent to the earth, they must move in curved paths, for they are deflected by the sun's magnetic field and again by the earth's magnetic field. The solar deflection may cause their effects to be greatest when the spots are near the sun's margin; the terrestrial deflection may cause concentration in bands roughly concentric with the magnetic poles of the earth. These conditions correspond with the known facts. Farther than this we cannot yet go. The calculations of Humphreys seem to indicate that the direct electrical effect of the sun's electrons upon atmospheric pressure is too small to be of appreciable significance in intensifying storms. On the other hand the peculiar way in which activity upon the margins of the sun appears to be correlated not only with atmospheric electricity, but with barometric pressure, seems to be equally strong evidence in the other direction. Possibly the sun's electrons and its electrical waves produce indirect effects by being Let us now inquire into the relation between the small cyclonic vacillations of the weather and the types of climatic changes known as historic pulsations and glacial fluctuations. One of the most interesting results of recent investigations is the evidence that sunspot cycles on a small scale present almost the same phenomena as do historic pulsations and glacial fluctuations. For instance, when sunspots are numerous, storminess increases markedly in a belt near the northern border of the area of greatest storminess, that is, in southern Canada and thence across the Atlantic to the North Sea and Scandinavia. (See Figs. 2 and 3.) Corresponding with this is the fact that the evidence as to climatic pulsations in historic times indicates that regions along this path, for instance Greenland, the North Sea region, and southern Scandinavia, Fig. 3.a Relative rainfall at times of increasing and decreasing sunspots Heavy shading, more rain with increasing spots. Light shading, more rain with decreasing spots. No data for unshaded areas. Figures indicate percentages of the average rainfall by which the rainfall during periods of increasing spots exceeds or falls short of rainfall during periods of decreasing spots. The excess or deficiency is stated in percentages of the average. Rainfall data from Walker: Sunspots and Rainfall. Fig.3bFig. 3.b Relative rainfall at times of increasing and decreasing sunspots. Heavy shading, more rain with increasing spots. Light shading, more rain with decreasing spots. No data for unshaded areas. Figures indicate percentages of the average rainfall by which the rainfall during periods of increasing spots exceeds or falls short of rainfall during periods of decreasing spots. The excess or deficiency is stated in percentages of the average. Rainfall data from Walker: Sunspots and Rainfall. Even more clear is the evidence from other regions where storms increase at times of many sunspots. One such region includes the southwestern United States, while another is the Mediterranean region and the semi-arid or desert parts of Asia farther east. In these regions innumerable ruins and other lines of evidence show that at the climax of each climatic pulsation there was more storminess and rainfall than at present, just as there now is when the sun is most active. In still earlier times, while ice was accumulating farther north, the basins of these semi-arid regions were filled with lakes whose strands still remain to tell the tale of much-increased rainfall and presumable storminess. If we go back still further in geological times to the Permian glaciation, the areas where ice accumulated most abundantly appear to be the regions where tropical hurricanes produce the greatest rainfall and the greatest lowering of temperature at times of many sunspots. From these and many other lines of evidence it seems probable that historic pulsations and glacial fluctuations are nothing more than sunspot cycles on a large scale. It is one of the fundamental rules of science to reason from the known to the unknown, from the near to the far, from the present to the past. Hence it seems advisable to investigate whether any of the climatic phenomena of the past may have arisen from an intensification of the solar conditions which now appear to give rise to similar phenomena on a small scale. If the preceding reasoning is correct, any disturbance of the solar atmosphere must have an effect upon the Here we must leave the cyclonic hypothesis of climate and must refer the reader once more to Earth and Sun for fuller details. In the rest of this book we shall discuss the nature of the climatic changes of past times and shall inquire into their relation to the various climatic hypotheses mentioned in the last two chapters. Then we shall inquire into the possibility that the solar system has ever been near enough to any of the stars to cause appreciable disturbances of the solar atmosphere. We shall complete our study by investigating the vexed question of why movements of the earth's crust, such as the uplifting of continents and mountain chains, have generally occurred at the same time as great climatic fluctuations. This would not be so surprising were it not that the climatic phenomena appear to have consisted of highly complex cycles while the uplift has been a relatively steady movement in one direction. We shall find some evidence that the solar disturbances which seem to cause climatic changes also have a relation to movements of the crust. |