GRAVITATION. The Forms of Matter—Shape of the Earth—Probability of the Mass forming this Planet having existed in a Nebulous State—Zodiacal Lights—Comets—Volatilization of Solid Matter by Artificial means—The principle of Gravitation—Its Influence through Space and within the smallest Limits—Gravitating powers of the Planets—Density of the Earth—Certainty of Newton’s Law of the Inverse Square—Discovery of Neptune—State of a Body relieved from Gravitation—Experiment explaining Saturn’s Ring, &c.—General inference. Let us suppose the earth—consisting of three conditions of matter; the solid, the fluid, and the aËriform—to be set free from that power by which it is retained in its present form of a spheroid flattened at the poles, but still subject to the influences of its diurnal and annual rotations. Agreeably to the law which regulates the conditions of all bodies moving at high velocities, the consequence of such a state of things would be, that our planet would instantly spread itself over an enormous area. The waters and even the solid masses of this globe would, in all probability, present themselves amidst the other phenomena of space in a highly attenuated state, revolving in an orbit around the sun, as a band of nebulous matter, which might sometimes be rendered sensible to sight by still reflecting solar light, or by condensation in the form of flights of shooting stars. This may be illustrated by experiment. If upon a rapidly revolving disc we place a ball of dust, it will be almost immediately spread out, and its particles will arrange themselves in a series of regular curves, varying Amid the remoter stars, some remarkable cloud-like appearances are discovered. These nebulÆ, presenting to the eye of the observer only a gleaming light, as from some phosphorescent vapour, were long regarded as indications of such a condition as that which we have just been considering. Astronomers saw, in those mysterious nebulÆ, a confirmation of their views, which regarded all the orbs of the firmament as having once been thin sheets of vapour, which had gradually, from irregular bodies traversing space, been slowly condensed about a centre, and brought within the limits of aggregating agencies, until, after the lapse of ages, they become sphered stars, moving in harmony amid the bright host of heaven. The researches of modern astronomers, aided by the magnificent instruments of Lord Rosse, May we not regard the zodiacal light as the remains of a solar luminiferous atmosphere, which once embraced the entire system of which it is the centre? The inferences drawn from a careful study of the condition of our own globe are in favour of the assumption of the existence of nebulous matter. By the processes of art and manufacture, by the operation of those powers on which organisation and life depend, solid matter is constantly poured off in such a state that it cannot be detected, as matter, by any of the human senses. Yet a thousand results, daily and hourly accumulating as truths around us, prove that the solid metals, the gross earths, and the constituents of animal and vegetable life, all pass away invisible to us, and become “thin air.” We know that, floating around us, these volatilized bodies exist in some material form, and numerous experiments in chemistry are calculated to convince us, that the most attenuated air is capable, with a slight change of circumstances, of being converted into the condition of solid masses. Hydrogen gas, the lightest, the most ethereal of the chemical elements, dissolves iron and zinc, arsenic, sulphur, and carbon; and from the transparent combinations thus formed, we can with facility separate those ponderous bodies. Such substances must exist in our own atmosphere; why not in the regions of space? Whether this planet ever floated a mass of nebulous matter, only known by its dim and filmy light, or comet-like rushed through space with widely eccentric orbit, are questions which can only receive the reply of speculative minds. Whether the earth and the other members of the Solar System were ever parts of a Central Sun, All we know is, that our earth is an oblate sphere, which, by the effects of its rotation around an axis, is somewhat enlarged at the equator and flattened at the poles;—that it maintains its regular course around the sun, in virtue of the operation of two forces, one of The principle of Gravitation Science has developed the grand truth, that it is by the exercise of this all-pervading influence that the earth is retained in its orbit—that the pellucid globe of dew which glistens on the leaf is bound together—that the dÉbris which float upon the lake accumulate into one mass—that the sea exhibits the phenomena of the tides—and the aËrial ocean its barometric changes. In all things this force is active, and throughout nature it is ever present. Our knowledge of the laws which it From the peculiarity of the laws which this power called gravity obeys, it has been inferred that it acts from centres of force; it is proved that its power diminishes in the inverse ratio of the square of the distance, and that the gravitating power of every material body is in the direct proportion of its mass. In astronomical calculations we have first to learn the mass of our earth. Experiment informs us that the density of our hardest rock is not above 2·8; but from the enormous pressure to which matter must be subjected, at great depths from the surface, the weight of the superincumbent mass constantly increasing, it is quite certain that the earth’s density must be far more than this. Maskelyne determined the attraction of large masses by a plummet and line on the mountain Schehallion. From data thus obtained by severe inductive experiments and mathematical analyses, the astronomer, by observing the deviations of a distant star, is enabled to determine the influence of those stellar bodies near which it passes, and, hence, to calculate the relative magnitudes of each. The accuracy of the law is in this way put to the severest test, and the precision of astronomical prediction is the strongest proof of its universality and truth. Rolling onward its lonely way, in the far immensity of our system, the planet Uranus was discovered by the elder Herschel,—so great its distance that its diminished light could scarcely be detected by the most powerful telescopes; but since its discovery its path has been carefully watched, and some irregularities noticed. Most of these disturbances were referable to known causes; but a little alteration in its rate of motion observed when the planet was in one portion of its vast orbit was unexplained. Convinced of the certainty of Newton’s law, and having determined that the attraction of known masses was insufficient So completely is all nature locked in the bonds of this infinite power, that it is no poetic exaggeration to declare, that the blow which rends any earthly mass is conveyed by successive impulses to every one of the myriads of orbs, which are even too remote for the reach of telescopic vision. An illustrative experiment must close our consideration of relative operations of rotation and gravitation. We well know that a body in a fluid state would, if suspended above the earth, it being at the same time free to take any form, naturally assume that of a flattened spheroid, from the action of the mass of the earth upon it: whereas the force of cohesive attraction acting equally from all sides of a centre, would, if uninfluenced, necessarily produce a perfect sphere. The best method of showing that this would be the case, is as follows:— Alcohol and water are to be mixed together until the From the centre of our earth to the utmost extremity of the universe—from the infinitely small to the immensely vast—gravitation exerts its force. It is met on all sides by physical powers acting in antagonism to it, but, like a ruling spirit, it restrains them in their wildest moods. The smallest dust which floats upon the wind Bears this strong impress of the Eternal Mind. In mystery round it, subtile forces roll; And gravitation binds and guides the whole. In every sand, before the tempest hurl’d, Lie locked the powers which regulate a world, And from each atom human thought may rise With might to pierce the mysteries of the skies,— To try each force which rules the mighty plan, Of moving planets, or of breathing man; And from the secret wonders of each sod, Evoke the truths, and learn the power of God. FOOTNOTES: 1st. The body shines by its own light, and then explodes like a sky-rocket, breaking into minute fragments too small to be any longer visible to the naked eye. 2nd. Such a body, having shone by its own light, suddenly ceases to be luminous. “The falling stars and other fiery meteors which are frequently seen at a considerable height in the atmosphere, and which have received different names according to the variety of their figure and size, arise from the fermentation of the effluvia of acid and alkaline bodies which float in the atmosphere. When the more subtile parts of the effluvia are burned away, the viscous and earthy parts become too heavy for the air to support, and by their gravity fall to the earth.”—Keith’s Use of the Globes. According to Sir Humphry Davy, in the Philosophical Transactions for 1847, “the luminous appearances of shooting stars and meteors cannot be owing to any inflammation of elastic fluids, but must depend upon the ignition of solid bodies.” 3. The body shines by the reflected light of the sun, and ceases to be visible by its passing into the earth’s shadow, or, in other words, is eclipsed. Upon the two former suppositions the fact of the star’s disappearance conveys to us no knowledge of its position, or of its distance from the earth; and all that can be said is, that if it be a satellite of the earth, the great rapidity of its motion involves the necessity of its being at no great distance from the earth’s surface—much nearer than the moon; while the resistance it would encounter in traversing the air would be so great that it is probably without the limits of our atmosphere. Sir J. W. Lubbock leans to the third hypothesis.—Sir J. W. Lubbock, On Shooting Stars: Phil. Mag. No. 213, p. 81. Sir J. Lubbock also published a supplementary paper on the same subject, in No. 214, p. 170. Mr. J. P. Joule entertains an hypothesis with respect to Shooting Stars similar to that advocated by Chladni to account for meteoric stones, and he reckons the ignition of these miniature planetary bodies by their violent collision with our atmosphere, to be a remarkable illustration of the doctrine of the equivalency of heat to mechanical power, or vis viva. If we suppose a meteoric stone of the size of a six-inch cube to enter our atmosphere at the rate of eighteen miles per second of time, the atmosphere being 1/100 of its density at the earth’s surface, the resistance offered to the motion of the stone will in this case be at least 51,600 lbs.; and if the stone traverse twenty miles with this amount of resistance, sufficient heat will thereby be developed to give 1° Fahrenheit to 6,967,980 lbs. of water. Of course by far the largest portion of this heat will be given to the displaced air, every particle of which will sustain the shock, whilst only the surface of the stone will be in violent collision with the atmosphere. Hence the stone may be considered as placed in a blast of intensely heated air, the heat being communicated from the surface to the centre by conduction. Only a small portion of the heat evolved will therefore be received by the stone; but if we estimate it at only 1/100 it will still be equal to 1° Fahrenheit per 69,679 lbs. of water, a quantity quite equal to the melting and dissipation of any materials of which it may be composed.—Mr. J. P. Joule, On Shooting Stars: Phil. Mag. No. 216, p. 348. The following passage is translated by the same author from Laplace:— “The anterior state (a state of cloudy brightness) was itself preceded by other states, in which the nebulous matter was more and more diffuse, the nucleus being less and less luminous. We arrive in this manner at a nebulosity so diffuse, that its existence could scarce be suspected. Such is in fact the first state of the nebula which Herschel carefully observed by means of his telescope.” Sir William Herschel has the following observations on these remarkable masses:— “The nature of planetary nebulÆ, which has hitherto been involved in much darkness, may now be explained with some degree of satisfaction, since the uniform and very considerable brightness of their apparent disc accords remarkably well with a much condensed, luminous fluid; whereas, to suppose them to consist of clustering stars will not so completely account for the milkiness or soft tint of their light, to produce which it would be required that the condensation of the stars should be carried to an almost inconceivable degree of accumulation. “How far the light that is perpetually emitted from millions of suns may be concerned in this shining fluid, it might be presumptuous to attempt to determine; but notwithstanding the inconceivable subtilty of the particles of light, when the number of the emitting bodies is almost infinitely great, and the time of the continual emission indefinitely long, the quantity of emitted particles may well become adequate to the constitution of a shining fluid or luminous matter, provided a cause can be found that may retain them from flying off, or reunite them.”—Observations on Nebulous Stars: Philosophical Transactions, vol. lxxxi. a.d. 1791. In addition, the following Memoirs on the same subject, by Sir William Herschel, have been published in the Philosophical Transactions:—Catalogue of 1000 NebulÆ and Clusters of Stars, vol. lxxvi.; Catalogue of another 1000, with remarks on the Heavens, vol. lxxix.; Catalogue of 500 more, with remarks as above, vol. xcii.; Of such as have a cometary appearance, vol. ci.; Of planetary nebulÆ, ibid.; Of stellar nebulÆ, ibid.; On the sidereal part of the heavens, and its connection with the nebulous, vol. civ.; On the relative distances of clusters of nebulous stars, vol. cviii. “At the vernal equinox the appearance of the zodiacal light is that of a pretty broad pyramidal, or rather lenticular, body of light, which begins to be visible as soon as the twilight decays. It is very bright at its lower or broader part near the horizon, and, if there be broken clouds about, often appears like the glow of a distant conflagration, or of the rising moon, only less red, giving rise, in short, to amorphous masses of light such as have been noticed by one of your correspondents as possibly appertaining to the comet. At higher altitudes, its light fades gradually, and is seldom traceable much beyond the Pleiades, which it usually, however, attains and involves, and (what is most to my present purpose) its axis at the vernal equinox is always inclined (to the northward of the equator) at an angle of between 60° and 70° to the horizon, and it is most luminous at its base, resting on the horizon, where also it is broadest, occupying, in fact, an angular breadth of somewhere about 10° or 12° in ordinary clear weather.” |