CHAPTER IV. THE SANTORIN GROUP.

Previous
Section of Santorin
Fig. 13.—Ideal Section through the Gulf of Santorin, to show the structure of the submerged volcano.—a. Island of Aspronisi; b. Island of Thera; 1. Old Kaimeni Island; 2. New Kaimeni Island; 3. Little Kaimeni Island.

(a.) Before leaving the subject of European active volcanoes, it is necessary to give some account of the remarkable volcanic island of Santorin, in the Grecian archipelago. This island for 2000 years has been the scene of active volcanic operations, and in its outline and configuration, both below and above the surface of the Mediterranean, presents the aspect of a partially submerged volcanic mountain. (See Section, Fig. 13.) If, for example, we can imagine the waters of the sea to rise around the flanks of Vesuvius until they have entered and overflowed to some depth the interior caldron of Somma, thus converting the old crater into a crescent-shaped island, and the cone of Vesuvius into an island—or group of islands—within the caldron, then we shall form some idea of the appearance and structure of the Santorin group.

Form of the Group.—The principal island, Thera, has somewhat the shape of a crescent, breaking off in a precipitous cliff on the inner side, but on the outer side sloping at an angle of about fifteen degrees into deep water. Continuing the curvature of the crescent, but separated by a channel, is the island of Therasia; and between this and the southern promontory of Thera is another island called Aspronisi. All these islands, if united, would form the rim of a crater, in which the volcanic matter slopes outward into deep water, descending at a short distance to a depth of 200 fathoms and upwards. In the centre of the gulf thus formed rise three islands, called the Old, New, and Little Kaimenis. These may be regarded as cones of eruption, which history records as having been thrown up at successive intervals. According to Pliny, the year 186 B.C. gave birth to Old Kaimeni, also called Hiera, or the Sacred Isle; and in the first year of our era Thera (the Divine) made its appearance above the water, and was soon joined to the older island by subsequent eruptions. Old Kaimeni also increased in size by the eruptions of 726 and 1427. A century and a half later, in 1573, another eruption produced the cone and crater called Micra-Kaimeni. Thus were formed, or rather were rendered visible above the water, the central craters of eruption; and between these and the inner cliff of Thera and Therasia is a ring of deep water, descending to a depth of over 200 fathoms. So that, were these islands raised out of the sea, we should have presented to our view a magnificent circular crater about six miles in diameter, bounded by nearly vertical walls of rock from 1000 to 1500 feet in height, and ruptured at one point, from the centre of which would rise two volcanic cones—namely, the Kaimenis—one with a double crater, still foci of eruption, and from time to time bursting forth in paroxysms of volcanic energy, of which those of 1650, 1707, and 1866 were the most violent and destructive.[1] Of this last I give a bird's-eye view (Fig. 14).

The only rock of non-volcanic origin in these islands consists of granular limestone and clay slate forming the ridge of Mount St. Elias, which rises to a height of 1887 feet at the south-eastern side of the island of Thera, crossing the island from its outer margin nearly to the interior cliff, so that the volcanic materials have been piled up along its sides. The rocks of St. Elias are much more ancient than any of the volcanic materials around; and, as Bory St. Vincent has shown, have been subjected to the same flexures, dip and strike, as those sedimentary rocks which go to form the non-volcanic islands of the Grecian archipelago.

Gulf of Santorin
Fig. 14.—Bird's-eye View of the Gulf of Santorin during the volcanic eruption of February 1866.—(After Lyell.)

Rocca Monfina

Ground Plan of Rocca Monfina

Fig. 15.—Rocca Monfina, in Southern Italy, showing a crater-ring of trachytic tuffs, from the midst of which, according to Judd, an andesite lava-cone has been built up. Compare with the Santorin Group.

(b.) Origin of the Santorin Group.—In reference to the origin of the Santorin group, Lyell regards it as a remnant of a great volcanic mountain which possessed a focus of eruption rising in the position of the present foci, but afterwards partially destroyed and the whole submerged to a depth of over 1000 feet. But another explanation is open to us, and one not inconsistent with what we now know of the physical changes to which the Mediterranean has been subjected since early Tertiary times. To my mind it is difficult to conceive how such a volcanic mountain as that of Santorin could have been formed under water; while, on the other hand, its physical structure and contour bear so striking a resemblance (as already observed) to those of Vesuvius and Rocca Monfina that we are much tempted to infer that it had a somewhat similar origin. Now we know that Vesuvius was built up by means of successive eruptions taking place under the air; and the question arises whether it could be possible that Santorin had a similar origin owing to the waters of the Mediterranean having been temporally lowered at a later Tertiary epoch. It has been stated by M. FouquÉ that the age of the more ancient volcanic beds of Santorin belong, as shown by the included fossils, to the newer Pliocene epoch. These are of course the unsubmerged, and therefore more recent strata, and may have been recently upheaved during one or more of the outbursts of volcanic energy. But it seems an impossibility that the Gulf of Santorin, with its precipitous walls and deep circular interior channel, as shown by the Ideal Section (Fig. 13), could have been formed otherwise than under the air. We are led, therefore, to inquire whether there was a time in the history of the Mediterranean, since the Eocene period, when the waters were lower than at present. That this was the case we have clear evidence. The remains of elephants, hippopotami, and other animals, which have been discovered in great numbers in the Maltese caves, show that this island was united to Sicily, and this again to Europe, during the later Pliocene epoch, so as to have become the abode of an Europasian fauna. According to Dr. Wallace, a causeway of dry land existed, stretching from Italy to Tunis in North Africa through the Maltese Islands—an inference involving the lowering of the waters of the Mediterranean by several hundred feet.[2] There is every reason for supposing that the old volcano of Santorin was in active eruption at this period; and its history may be considered to be similar to that of Vesuvius until, at the rising of the waters during the Pluvial (or Post-Pliocene) epoch, during which they rose higher than at present, Santorin was converted into a group of islands, slightly differing in form from those of the present day. This view seems to meet the difficulties regarding the origin of this group, difficulties which Lyell had long since clearly recognised.

(c.) Limit of the Mediterranean Volcanic Region.—With the Santorin group we conclude our account of the active European volcanoes. It may be observed, however, that from some cause not ascertained the volcanic districts of the Mediterranean and its shores are confined to the north side of that great inland sea; so that as regards vulcanicity the African coast presents a striking contrast to that of the opposite side. If we draw a line from the shores of the Levant to the Straits of Gibraltar, by Candia, Malta, and to the south of Pantelleria and Sardinia, we shall find that the volcanic islands and districts of the mainland lie to the north of it.[3] This has doubtless some connection with the internal geological structure. The immunity of the Libyan desert from volcanic irruptions is in keeping with the remarkably undisturbed condition of the Secondary strata, which seldom depart much from the horizontal position; while the igneous rocks of the Atlas mountains are probably of great geological antiquity. On the other hand, the Secondary and Tertiary formations of the northern shores and islands of the Mediterranean are generally characterised by the highly-inclined, flexured, and folded position of the strata. Hence we may suppose that the crust over the region lying to the north of the volcanic line, owing to its broken and ruptured condition, was less able to resist the pressure of the internal forces of eruption than that lying to the south of it; and that, in consequence, vents and fissures of eruption were established over the former of these regions, while they are absent in the latter.

[1] Fuller details will be found in Daubeny's Volcanoes, chap. xviii., and Lyell's Principles of Geology, vol. ii. p. 65 (edition 1872). The bird's-eye view is taken from this latter work by kind permission of the publisher, Mr. J. Murray, as also the accompanying Ideal Section, Fig. 13.

[2] Wallace, Geographical Distribution of Animals (1876). The author's Sketch of Geological History, p. 130 (Deacon & Co., 1887).

[3] The volcanic area lying to the north of this line will include Sardinia, Sicily, Pantelleria, the Grecian Archipelago, Asia Minor, and Syria; the non-volcanic area lying to the south of this line will include the African coast, Malta, Isles of Crete and Cyprus. The Isle of Pantelleria is apparently just on the line, which, continued eastward, probably follows the north coast of Cyprus, parallel to the strike of the strata and of the central axis of that island.—See "Carte GÉologique de l'Île de Chypre, par MM. Albert Gaudry et AmedÉe Damour" (1860).


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page