Connection of Earthquakes with Volcanic Action.—The connection between earthquake shocks and volcanic eruptions is now so generally recognised that it is unnecessary to insist upon it here. All volcanic districts over the globe are specially liable to vibrations of the crust; but at the same time it is to be recollected that these movements visit countries occasionally from which volcanoes, either recent or extinct, are absent; in which cases we may consider earthquake shocks to be abortive attempts to originate volcanic action.
(a.) Origin.—From the numerous observations which have been made regarding the nature of these phenomena by Hopkins, Lyell, and others, it seems clearly established that earthquakes have their origin in some sudden impact of gas, steam, or molten matter impelled by gas or steam under high pressure, beneath the solid crust.[1] How such impact originates we need not stop to inquire, as the cause is closely connected with that which produces volcanic eruptions. The effect, however, of such impact is to originate a wave of translation through the crust, travelling outwards from the point, or focus, on the surface immediately over the point of impact.[2] These waves of translation can in some cases be laid down on a map, and are called "isoseismal curves," each curve representing approximately an equal degree of seismal intensity; as shown on the chart of a part of North America affected by the great Charleston earthquake. (Fig. 37.) Mr. Hopkins has shown that the earthquake-wave, when it passes through rocks differing in density and elasticity, changes in some degree not only its velocity, but its direction; being both refracted and reflected in a manner analogous to that of light when it passes from one medium to another of different density.[3] When a shock traverses the crust through a thickness of several miles it will meet with various kinds of rock as well as with fissures and plications of the strata, owing to which its course will be more or less modified.
(b.) Formation of Fissures.—During earthquake movements, fissures may be formed in the crust, and filled with gaseous or melted matter which may not in all cases reach the surface; and, on the principle that volcanoes are safety-valves for regions beyond their immediate influence, we may infer that the earthquake shock, which generally precedes the outburst of a volcano long dormant, finds relief by the eruption which follows; so that whatever may be the extent of the disastrous results of such an eruption, they would be still more disastrous if there had been no such safety-valve as that afforded by a volcanic vent. Thus, probably, owing to the extinction of volcanic activity in Syria, the earthquakes in that region have been peculiarly destructive. For example, on January 1, 1837, the town of Safed west of the Jordan valley was completely destroyed by an earthquake in which most of the inhabitants perished. The great earthquakes of Aleppo in the present century, and of Syria in the middle of the eighteenth, were of exceptional severity. In that of Syria, which took place in 1759, and which was protracted during a period of three months, an area of 10,000 square leagues was affected. Accon, Saphat, Baalbeck, Damascus, Sidon, Tripoli, and other places were almost entirely levelled to the ground; many thousands of human beings lost their lives.[4] Other examples might be cited.
(c.) Earthquake Waves.—We have now to return to the phenomena connected with the transmission of earthquake-waves. The velocity of transmission through the earth is very great, and several attempts have been made to measure this velocity with accuracy. The most valuable of such attempts are those connected with the Charleston and Riviera shocks. Fortunately, owing to the perfection of modern appliances, and the number of observers all over the globe, these results are entitled to great confidence. The phenomena connected with the Charleston earthquake, which took place on the 31st of August, 1886, are described in great detail by Captain Clarence E. Dutton, of the U.S. Ordnance Corps.[5] The conclusions arrived at are;—that as regards the depth of the focal point, this is estimated at twelve miles, with a probable error of less than two miles; while, as regards the rate of travel of the earthquake-wave, the estimate is (in one case) about 3.236 miles per second; and in another about 3.226 miles per second.
On the other hand, in the case of the earthquake of the Riviera, which took place on the 23rd of February, 1887, at 5.30 a.m. (local time), the vibrations of which appear to have extended across the Atlantic, and to have sensibly affected the seismograph in the Government Signal Office at Washington, the rate of travel was calculated at about 500 miles per hour, less than one-half that determined in the case of Charleston; but Captain Dutton claims, and probably with justice, that the results obtained in the latter case are far more reliable than any hitherto arrived at.
(d.) Oceanic Waves.—When the originating impact takes place under the bed of the ocean—either by a sudden up-thrust of the crust to the extent, let us suppose, of two or three feet, or by an explosion from a submarine volcano—a double wave is formed, one travelling through the crust, the other through the ocean; and as the rate of velocity of the former is greatly in excess of that of the latter, the results on their reaching the land are often disastrous in the extreme. It is the ocean-wave, however, which is the more important, and calls for special consideration. If the impact takes place in very deep water, the whole mass of the water is raised in the form of a low dome, sloping equally away in all directions; and it commences to travel outwards as a wave with an advancing crest until it approaches the coast and enters shallow water. The wave then increases in height, and the water in front is drawn in and relatively lowered; so that on reaching a coast with a shelving shore the form of the surface consists of a trough in front followed by an advancing crest. These effects may be observed on a small scale in the case of a steamship advancing up a river, or into a harbour with a narrow channel, but are inappreciable in deep water, or along a precipitous open coast.
(e.) The Earthquake of Lisbon, 1755.—The disastrous results of a submarine earthquake upon the coast have never been more terribly illustrated than in the case of the earthquake of Lisbon which took place on November 1, 1755. The inhabitants had no warning of the coming danger, when a sound like that of thunder was heard underground, and immediately afterwards a violent shock threw down the greater part of their city; this was the land-wave. In the course of about six minutes, sixty thousand persons perished. The sea first retired and left the harbour dry, so forming the trough in front of the crest; immediately after the water rolled in with a lofty crest, some 50 feet above the ordinary level, flooding the harbour and portions of the city bordering the shore. The mountains of Arrabida, Estrella, Julio, Marvan, and Cintra, were impetuously shaken, as it were, from their very foundations; and according to the computation of Humboldt, a portion of the earth's surface four times the extent of Europe felt the effects of this great seismic shock, which extended to the Alps, the shores of the Baltic, the lakes of Scotland, the great lakes of North America, and the West Indian Islands. The velocity of the sea-wave was estimated at about 20 miles per minute.
(f.) Earthquake of Lima and Callao, 28th October, 1746.—Of somewhat similar character was the terrible catastrophe with which the cities of Lima and Callao were visited in the middle of the last century,[6] in which the former city, then one of great magnificence, was overthrown; and Callao was inundated by a sea-wave, in which out of 23 ships of all sizes in the harbour the greater number foundered; several, including a man-of-war, were lifted bodily and stranded, and all the inhabitants with the exception of about two hundred were drowned. A volcano in Lucanas burst forth the same night, and such quantities of water descended from the cone that the whole country was overflowed; and in the mountain near Pataz, called Conversiones de Caxamarquilla, three other volcanoes burst forth, and torrents of water swept down their sides. In the case of these cities, the land-wave, or shock, preceded the sea-wave, which of course only reached the port of Callao.
Isoseismal curves Fig. 37.—The lines represent isoseismal curves, or curves of equal intensity, the force decreasing outwards from the focus at Charleston, No. 10. |
(g.) Earthquake of Charleston, 31st August, 1886.—I shall close this account of some remarkable earthquakes with a few facts regarding that of Charleston, on the Atlantic seaboard of Carolina.[7] At 9.51 a.m. of this day, the inhabitants engaged in their ordinary occupations were startled by the sound of a distant roar, which speedily deepened in volume so as to resemble the noise of cannon rattling along the road, "spreading into an awful noise, that seemed to pervade at once the troubled earth below and the still air above." At the same time the floors began to heave underfoot, the walls visibly swayed to and fro, and the crash of falling masonry was heard on all sides, while universal terror took possession of the populace, who rushed into the streets, the black portion of the community being the most demonstrative of their terror. Such was the commencement of the earthquake, by which nearly all the houses of Charleston were damaged or destroyed, many of the public buildings seriously injured or partially demolished. The effects were felt all over the States as far as the great lakes of Canada and the borders of the Rocky Mountains. Two epicentral foci appear to have been established; one lying about 15 miles to the N.W. of Charleston, called the Woodstock focus; the other about 14 miles due west of Charleston, called the Rantowles focus; around each of these foci the isoseismic curves concentrated,[8] but in the map (Fig. 37) are combined into the area of one curve. The position of these foci clearly shows that the origin of the Charleston earthquake was not submarine, though occurring within a short distance of the Atlantic border; the curves of equal intensity (isoseismals) are drawn all over the area influenced by the shock.
As a general result of these detailed observations, Captain Dutton states that there is a remarkable coincidence in the phenomena with those indicated by the theory of wave-motion as the proper one for an elastic, nearly homogeneous, solid medium, composed of such materials as we know to constitute the rocks of the outer portions of the earth; but on the other hand he states that nothing has been disclosed which seems to bring us any nearer to the precise nature of the forces which generated the disturbance.[9]
[5] Ninth Annual Report, U.S. Geological Survey (1888).