Volcanic phenomena are the outward manifestations of forces deep-seated beneath the crust of the globe; and in seeking for the causes of such phenomena we must be guided by observation of their nature and mode of action. The universality of these phenomena all over the surface of our globe, in past or present times, indicates the existence of a general cause beneath the crust. It is true that there are to be found large tracts from which volcanic rocks (except those of great geological antiquity) are absent, such as Central Russia, the Nubian Desert, and the Central States of North America; but such absence by no means implies the non-existence of the forces which give rise to volcanic action beneath those regions, but only that the forces have not been sufficiently powerful to overcome the resistance offered by the crust over those particular tracts. On the other hand, the similarity of volcanic lavas over wide regions is strong evidence that they are drawn from (a.) Lines of Volcanic Action.—It has been shown in a previous page that volcanic action of recent or Tertiary times has taken place mainly along certain lines which may be traced on the surface of a map or globe. One of these lines girdles the whole globe, while others lie in certain directions more or less coincident with lines of flexure, plication or faulting. The Isle of Sumatra offers a remarkable example of the coincidence of such lines with those of volcanic vents. Not only the great volcanic cones, but also the smaller ones, are disposed in chains which run parallel to the longitudinal axis of the island (N.W.-S.E.). The sedimentary rocks are bent and faulted in lines parallel to the main axis, and also to the chains of volcanic mountains, and the observation holds good with regard to different geological periods. (b.) Such Lines generally lie along the Borders of the Ocean.—But even where, from some special cause, actual observation on the relations of the strata are precluded, the general configuration of the ground and the relations of the boundaries between land and sea to those of volcanic chains, evidently point in many cases to their mutual interdependence. The remarkable straightness of the coast of Western (c.) Areas of Volcanic Action in the British Isles.—In the case of the British Islands it may be observed that the later Tertiary volcanic districts lie along very ancient depressions, which may indicate zones of weakness in the crust. Thus the Antrim plateau, as originally constituted, lay in the lap of a range of hills formed of crystalline, or Lower Silurian, rocks; while the volcanic isles of the Inner Hebrides were enclosed between the solid range of the ArchÆan rocks of the Outer Hebrides on the one side, and the Silurian and ArchÆan ranges of the mainland on the other. And if we go back to the Carboniferous period, we find that the volcanic district of the centre of Scotland was bounded by ranges of solid strata both to the north and south, where the resistance to interior pressure from molten matter would have been greater than in the Carboniferous hollow-ground, (d.) Special Conditions under which the Volcanic Action operates.—Assuming, then, that the molten matter, forming an interior magma or shell, is constantly exerting pressure against the inner surface of the solid crust, and can only escape where the crust is too weak (owing to faults, plications, or fissures) to resist the pressure, we have to inquire what are the special conditions under which outbursts of volcanic matter take place, and what are the general results as regards the nature of the ejecta dependent on those conditions. (e.) Effect of the Presence or Absence of Water.—The two chief conditions determining the nature of volcanic products, considered in the mass, are the presence or absence of water. Such presence or absence does not of course affect the essential chemical composition of the ejecta, but it materially influences the form in which the matter is erupted. The agency of water in volcanic eruptions is a very interesting and important subject in connection with the history of volcanic action, and has been ably treated by Professor Prestwich. (f.) Access of Surface Water to Molten Lava during Eruptions.—The existence of water during certain stages in eruptions is too frequent a phenomena to be lost sight of; but its presence may be accounted for in other ways, besides proximity to the sea or ocean. Certain volcanic mountains, such as Etna and Vesuvius, are built upon water-bearing strata, (g.) Nature of the Interior Reservoir from which Lavas are derived.—We have now to consider the nature of the interior reservoir from which lavas are derived, and the physical conditions necessary for their eruption at the surface. Without going back to the question of the original condition of our globe, we may safely hold the view that at a very early period of geological history it consisted of a solidified crust at a high temperature, enfolding a globe of molten matter at a still higher temperature. As time went on, and the heat radiated into space from the surface of the globe, while at the same time slowly ascending from the interior by conduction, the crust necessarily contracted, and pressing more and more on the interior molten magma, this latter was forced from time to time to break through the contracting crust along zones of weakness or fissures. (h.) The Earth's Crust in a State of both Exterior Thrust and of Interior Tension.—As has been shown by Hopkins, From the above considerations, it follows that the earth's crust must be in a condition both of pressure (or lateral thrust) towards the exterior portion, and of tension towards the interior, the former condition resulting in faulting and flexuring of the rocks, the latter in the formation of open fissures, through which lava can ascend under high pressure. These operations are of course the attempt of the natural forces to arrive at a condition of equilibrium, which is never attained because the processes are never completed; in other words, radiation and convection of heat are constantly proceeding, giving rise to new forces of thrust and tension. It now remains for us to consider what may be the condition of the interior molten magma; and in doing so we must be guided to a large extent by considerations regarding the nature of the extruded matter at the surface. (i.) Relative Densities of Lavas.—Now, observation shows that, as bearing on the subject under consideration, lavas occur mainly under two classes as regards their density. The most dense (or basic) are those in which silica is deficient, but iron is abundant; the least dense (or acid) are those which are rich in silica, but in which iron occurs in small quantity. This division corresponds with that proposed by Bunsen and Durocher
The Andesite group forms a connecting link between the highly acid and the basic groups, and there are many varieties of the above which it is not necessary to enumerate. Durocher supposes that the molten magmas of these various rocks are arranged in concentric shells within the solid crust in order of their respective densities, those of the lighter density, namely the acid magmas, being outside those of greater density, namely the basic; and this is a view which seems not improbable from a consideration not only of the principle itself, but of the succession of the varieties of lava in many districts. Thus we find that acid lavas have been generally extruded first, and basic afterwards—as in the cases of Western America, of Antrim, the Rhine and Central France. And if the interior of our globe had been in a condition of equilibrium from the time of the consolidation of the crust to the present, reason would induce us to conclude that the lavas would ultimately have arranged themselves in accordance with the conditions of density beneath that crust. But the state of equilibrium has been constantly disturbed. Every fresh outburst of volcanic force, and every fresh extrusion of lava, tends to disturb it, and to alter the relations of the interior viscous or molten magmas. Owing to this it happens, as we may suppose, that the (j.) Conclusion as regards the Ultimate Cause of Volcanic Action.—Notwithstanding, however, the complexity of the subject, and the uncertainties which must attend an inquiry where some of the data are outside the range of our observation, sufficient evidence can be adduced to enable us to arrive at a tolerably clear view of the ultimate cause of volcanic action. So tempting a subject was sure to evoke numerous essays, some of great ingenuity, such as that of Mr. Mallet; others of great complexity, such as that of Dr. Daubeny. But more recent consideration and wider observation have tended to lead us to the conclusion that the ultimate cause is the most simple, the most powerful, and the most general which can be suggested; namely, the contraction of the crust due to secular cooling of the more deeply seated parts by conduction and radiation of heat into space. Owing to this cause, the enclosed molten matter is more or less abundantly extruded from time to time along the lines and vents of eruption, so as to accommodate itself to the ever-contracting crust. Nor can we doubt that this process has been going on from the very earliest period of the earth's history, and formerly at a greater rate than at present. When the crust was more highly heated, the radiation and conduction must have been proportionately more rapid. Owing to |