When we turn aside into the areas cut off by spurs of gravel and islands of Jurassic rock, we find wide and deep masses of peat which has grown and been preserved from denudation in these embayed and isolated areas. Burwell Fen, for instance, protected on the north and west by the Cretaceous ridge of Wicken and the Jurassic ridge of Upware, furnishes most of the peat used in the surrounding district. If we travel about two miles to the north-west from the pit dug near the railway station (see Fig. 4, p. 11) over the hill on which Ely stands, we shall come to West Fen, where there is a great mass of peat which has grown in a basin now almost quite surrounded by Kimmeridge Clay. In this there is a great quantity of timber at a small depth from the surface. The tree trunks almost all lie with their root-end to the south-west, but some are broken off, some are uprooted, telling clearly a story of growth on the peat which had increased and swelled till the surface was lifted above the level of floods. Then some change—perhaps more rapid subsidence, perhaps changes in the outfalls—let in flood water, the roots rotted and a storm from the south-west, which was the most exposed side and the direction of the prevalent winds, laid them low. The frequent occurrence of large funguses, Hypoxylon, Polyporus, etc., points to conditions at times unfavourable to the healthy growth of timber. It is worth noting when trying to read the story of the Fens as recorded by their fallen trees that in all forests we find now and then a few trees blown down together though the surrounding trees are left. This may be the result of a fierce eddy in the cycloidal path of the storm, but more commonly it seems to be due to the fact that every tree has its "play," like a fishing rod, and recurring gusts, not coinciding with its rhythm, sometimes catch it at a disadvantage and break or blow it down. The story told by the West Fen trees is quite different from that told by the water-borne and water-worn trunks in the section by Ely station. The same variable conditions prevailed also in the more westerly tracts of the Fen Basin, but the above examples are sufficient for our present purpose. From the large numbers of trees found in some localities and from records referring to parts of the Fens as forest it has sometimes been supposed that the Fens were well wooded, but forest did not generally and does not now always mean a wood, as for example in the case of the deer forests of Scotland. When Ingulph[5] says that portions of the Fenland were disafforested by Henry I, Stephen, Henry II, and Richard, who gave permission to build upon the marshes, this probably meant that they no longer preserved them so strictly, but allowed people to build on the gravel banks and islands in them. Dugdale, recording a stricter enforcement of game-laws, quotes proceedings against certain persons in Whittlesea, Thorney and Ramsey for having "wasted all the fen of Kynges-delfe of the alders, hassacks and rushes so that the King's deer could not harbour there." He does not mention forest trees. In the growth and accidents of vegetation in a swamp there are some circumstances which are of importance to note with a view to the interpretation of the results observed in the Fens. For instance in fine weather there is a constant lifting and floating of the confervoid algae which grow on the muddy bed of the stream. This is brought about by the development of gas under the sun's influence in the thick fibrous growth of the alga. The little bubbles give it a silvery gleam and by and by produce sufficient buoyancy in the mass to tear it out and make it rise to the surface dropping fine mud as it goes and thus making the water turbid. Other plants, such as Utricularia, Duckweed, etc., have their period of flotation, and in the "Breaking of the Mere" in Shropshire we have a similar phenomenon. In the "Floating Island" on Derwentwater the same sort of thing is seen with coarser plants. All these processes are going on in the meres and in the streams which meander through the Fens and did so more freely before their reclamation. But besides this, when the top of the spongy peat is raised above the water level and dries by evaporation, then heath, ferns and other plants and at last trees grow on it, until accident submerges it all again. This at once shows why we often find an upper peat with a different group of plant remains resting upon a lower peat with plants that grow under water. The most conspicuous examples of these various kinds of peat we see in the mountainous regions of the North and West, where the highest hills are often capped with peat from eight to ten feet in thickness, creeping over the brow and hanging on the steep mountain sides. Sometimes, close by, we see the gradual growth of peat from the margin of a tarn where only water-weeds can flourish. The "Hill Peat" is made up of Sphagnum and other mosses and of ferns and heather. The "Tarn Peat" of conferva, potamogeton, reeds, etc. As Hill Peat now grows on the heights and steeps where no water can stand and Tarn Peat in lakes and ponds lying in the hollows of the mountains and moors, so the changes in the outfalls and the swelling and sinking of the peat have given us in the Fens, here the results of a dry surface with its heather and ferns and trees, and there products of water-weeds only, and, from the nature of the case, the subaerial growth is apt to be above the subaqueous. One explanation of the growth of peat under both of these two very different geographical conditions is probably the absence of earthworms. The work of the earthworm is to drag down and destroy decaying vegetable matter and to cast the mineral soil on to the surface, but earthworms cannot live in water or in waterlogged land, and where there are no earthworms the decaying vegetation accumulates in layer after layer upon the surface, modified only by newer growths. Some years ago a great flood kept the land along the Bin Brook under water for several days and the earthworms were all killed, covering the paddock in front of St John's New Buildings in such numbers that when they began to decompose it was quite disagreeable to walk that way. It reminded me of the effects of storm on the cocklebeds at the mouth of the Medway, where the shells were washed out of the mud, the animals died on the shore and the empty shells were in time washed round the coast of Sheppey to the sheltered corner at Shellness. Here they lie some ten feet deep and are dug to furnish the material for London pathways. In those cases when the storm had passed the earthworms and the cockles came again, but the Hill Peat is always full of water retained by the spongy Sphagnum and similar plants, and the Fens are or were continually, and in some places continuously, submerged and no earthworms could live under such conditions. The blackness of peat and of bog-oak may be largely but certainly not wholly due to carbonaceous matter. Iron must play an important part. There is in the Sedgwick Museum part of the trunk of a Sussex oak which had grown over some iron railings and extended some eight inches or more beyond the outside of the part which was originally driven in to hold the rails. Mr Kett came upon the buried iron when sawing up the tree in his works and kindly gave it to me. From the iron a deep black stain has travelled with the sap along the grain, as if the iron of the rail and the tannin of the oak had combined to produce an ink. The well-known occurrence of bog-iron in peat strengthens this suggestion. An opportunity of observing this enveloping growth of wood round iron railings is offered in front of No. 1, Benet Place, Lensfield Road. The trees in the Fens often lie at a small depth and when exposed to surface changes perish by splitting along the medullary rays. It is not clear how long it takes to impart a peaty stain to bone, but we do find a difference between those which are undoubtedly very old and others which we have reason to believe may be more recent. Compare the almost black bones of the beaver, for instance, with the light brown bones of the otter in the two mounted skeletons in the Sedgwick Museum. |