THE PERFECT INSECT OR IMAGO. In common with all other members of the class, the body of a Lepidopterous insect consists of three main divisions: (1) the head, (2) the thorax, and (3) the abdomen. THE HEAD. The front of the head is termed the face, the top the crown, the sides are nearly entirely occupied by the compound eyes (Plate I., fig. 11, AA), and the lower surface by the organs of the mouth. The Eyes consist of a very large number of simple lenses arranged in the form of two hemispheres, one on each side of the head. The ocelli, or simple eyes, are situated on the crown, and are usually almost entirely covered by scales. The AntennÆ are two jointed appendages attached to the top of the head above the eyes. They vary very much in structure. The following are the terms used in describing the different forms of antennÆ in the Lepidoptera:— 1. Pectinated, when the joints have long processes like the teeth of a comb. If these are on one side only, the antennÆ are unipectinated; if on both sides, bipectinated. (Plate I., fig. 20, bipectinated antenna of Nyctemera annulata.) 2. Dentate, when the joints are armed with slight pointed spines. 3. Serrate, when the joints have sharp projections like the teeth of a saw. (Fig. 18, antenna of Melanchra composita.) 4. Filiform, when the whole antenna is simple or thread-like. (Fig. 19, antenna of Epirranthis alectoraria.) The clothing of the antennÆ also varies, and is distinguished as under:— 1. Ciliated, when clothed with one or two series of short, fine hairs. 2. Fasciculate-ciliated, when the hairs are collected into tufts. (Fig. 17, antenna of Chloroclystis plinthina.) 3. Pubescent, when the antennÆ are clothed with uniform short hairs. (Fig. 19.) The functions of the antennÆ are still a matter of dispute amongst entomologists. The majority of the older naturalists regarded them as organs of hearing. The antennÆ are almost always more fully developed in the male than in the female. From this circumstance many modern entomologists consider that one of their functions is to enable the former to find the latter. The organs of the mouth are thus distinguished:— 1. The Labrum, or upper lip (Plate I., fig. 11, l), a minute rudimentary plate situated in front immediately above the proboscis. 2. The Mandibles, or upper jaws (m.m), two minute sickle-shaped organs situated just below the labrum, also rudimentary. 3. The Proboscis, or Haustellum[1] (c), a tubular extensible organ formed of the two maxillÆ, or lower jaws, which have become greatly elongated, semi-tubular, and closely pressed together at the edges, but separable at the will of the insect—a structure which enables the organ to be easily cleansed when necessary, and is extremely interesting as indicating so clearly the true development of the proboscis from the maxillÆ. The Maxillary palpi (p.p) are two jointed organs attached to the base of the proboscis and very frequently rudimentary, but fully developed amongst certain of the Micro-Lepidoptera. The Labium, or lower lip, is situated below the proboscis and carries the Labial palpi (figs. 5 and 6), two large jointed organs which are very conspicuous in nearly all the species and often quite conceal the maxillary palpi. They are usually regarded as organs of touch, but their true function does not seem to be properly understood. In the Lepidoptera they appear to protect the proboscis, which, when out of use, is always coiled up in a spiral between them. The labrum and mandibles can only be seen by removing the large labial palpi. THE THORAX carries the organs of locomotion, which consist of two pairs of wings attached to its sides, and three pairs of legs attached beneath, a pair belonging to each of the three segments of which the thorax is composed. On the front of the thorax there are two flap-like organs covered with scales, termed the patagia. The Wings vary greatly in shape, but usually they are triangular. The portion of the wing which joins on to the thorax is termed the base. The front margin is called the costa, the outer margin the termen, and the lower margin the dorsum, these being described as situated when the wing is extended in flight. The angle between the costa and termen "In the Micropterygina, a membranous or spine-like process called the jugum rises from the dorsum of the fore-wing near the base and passes under the hind-wing, which is thus held between the process and the overlapping portion of the fore-wing."—(Meyrick.) The veins of the wings are thus described by Mr. Meyrick:— "The wings are traversed by a system of Veins—tubular structures which serve at once as extensions of the tracheal system, and to form a stiff framework for the support of the wing. In the normal type of Lepidoptera the fore-wings possess three free veins towards the dorsum, termed 1a, 1b, and 1c; a central cell, out of which rise ten veins, numbered 2 to 11, the sides of the cell being known as the upper median, lower median, and transverse veins respectively; and a free subcostal vein, numbered 12; whilst the hind-wings differ from the fore-wings in having only six veins rising from the central cell, numbered 2 to 7, so that the free subcostal vein is numbered 8 (see Plate I., figs. 3 and 4, assumed type of neuration of a Lepidopterous insect). In some forms a forked parting-vein traverses the middle of the cell longitudinally, and a second parting-vein traverses the upper portion, so as to form a secondary cell; but these are more frequently absent or represented only by folds in the membrane. In a few forms there is a tendency to the production of several false veins, termed pseudoneuria, appearing as short branches from the subcostal vein of the hind-wings to the costa; these are thickenings of the membrane, and are commonly very irregular and variable, often uneven in thickness or incomplete. Sometimes one of these near the base is better developed and more permanent in character; it is then termed the prÆcostal spur (see Plate I., figs. 89 and 279). Modifications in the general arrangement of the veins may arise through any of the following processes, viz.: (1) obsolescence, when a vein loses its normal tubular structure, becoming attenuated and reduced in substance, until it appears a mere fold of the membrane (Plate II., fig. 60, vein 5 in hind-wings of Selidosema); (2) stalking, when the two veins are fused together for a portion of their length from their base, so as to appear to rise on a common stalk (Plate II., fig. 34, veins 6 and 7 in hind-wing of Hydriomena); (3) coincidence, when two veins are fused together for the whole of their length, so that one appears entirely absent, an extreme form of stalking; (4) anastomosis, when two veins rise separate, meet, and are fused together for a certain distance, and then separate again (Plate II., fig. 23, veins 7 and 8 in the hind-wings of the ? of Tatosoma); (5) concurrence, when a vein rises separate, runs into another, and does not separate again, an extreme form of anastomosis; (6) connection, when two veins are connected by a short transverse bar passing from one to the other, a special form of anastomosis, evolved from the ordinary form under the influence of a tendency to lateral extension (Plate II., fig. 28, veins 7 and 8 in hind-wing of Paradetis). Vein 1b in both wings is often furcate at the base. "The type of veins in the Micropterygina differs from that described above in two essential particulars, viz.: (1) there may be three additional veins in the fore-wings, rising out of vein 11 or 12; and (2) the veins of the hind-wings are practically identical in number and structure with those of the fore-wings, being thus much more numerous than in the ordinary type. There is also often a system of cross-bars between the veins near the base of the wing (Plate I., figs. 22 and 23, neuration of Hepialus). "The structure of the veins can be best observed on the under surface of the wing, where they are more prominent. The student should begin by completely denuding of scales a few wings of common species: the wing should be cut off and laid on a moistened piece of glass, to which it will adhere; the scales should then be removed, first from one surface and then from the other, with a fine, moist camel's-hair brush—an operation requiring a little patience and delicacy of touch; the veins will thus be rendered conspicuous.[2] When, however, the student has familiarised himself with the general subject, it will not be found necessary in practice to resort to this process; most details will be easily observed without denudation[3]; where this is not the case (as where the veins are closely crowded or otherwise obscured), the scales can be removed with the brush on the under surface in the locality of the difficulty only, without cutting off the wing or otherwise damaging the specimen, which remains in the collection available for all purposes as before; with proper practice, even the smallest species are amenable to this treatment, which does not require more skill than the actual setting of the specimen. Some workers prefer to put a drop of benzine on the spot, which renders it temporarily transparent; the effect is short-lived, as the benzine evaporates rapidly, and the cilia (if long) are liable to be damaged by this method." The Legs consist of the following joints (see Plate I., fig. 21): (1) coxa, (2) trochanter, (3) femur, (4) tibia, (5) tarsus, (6) claw. The tarsus normally consists of five joints, but is more or less aborted when the leg is not employed for walking. The spines (SS) on the tibiÆ of the several legs vary considerably in size and number. They are often useful to the systematist for purposes of classification. THE ABDOMEN consists of nine segments, some of which are often fused together. It contains the various internal organs, of which the most important are those of Digestion and Reproduction. The Digestive System (Plate I., fig. 10) consists of the following organs: A, the oesophagus, or throat; C, the sucking stomach; D, the ventriculus or stomach; E, the small intestine; G, the cÆcum; H, the colon; K, the biliary vessels; N, the salivary vessels. The function of the sucking stomach is to exhaust the air in the throat and proboscis, and thus to cause the ascent of the fluids into the stomach when the insect is feeding. |