As earthquakes are shakings of the earth's crust in places where it is uncovered by the waters of the ocean, so seaquakes are the shakings of those portions that lie on the bed of the ocean. Mallet points out that the earthquake wave may start either in the interior of the continent, or on the bed of the ocean; that the latter place is the more common, since on the land vents—rude safety-valves, as it were,—are provided by the craters of the volcanoes; that, when earthquakes start on the ocean bed, the impulses are conveyed in different forms of waves, i. e., those through the solid earth, those through the water, and those through the air, with varying sounds like bellowings and explosions, or like the rolling of wagons over rough roads. To learn when quakes occur on the sea is a much harder task, since on the land we can use seismoscopes, seismographs, or seismometers to indicate, record, or measure the shakings of the crust, while on the sea, where the water is always in more or less motion and the surface so far from the ocean's bed this is impossible, or, rather shall it be said, has hitherto been found so; for that the mind of man may surmount this obstacle is not impossible to conceive. To detect the wave produced by the quaking of the bed of the ocean is exceedingly difficult, since those in very deep water are flat or possess but a small height. Indeed, During the great earthquake of Simoda in Japan, 1854, the waters of the bay were first greatly agitated, and then retreated, leaving the bottom bare in places where the water was formerly thirty feet deep. A wave, thirty feet high, then rushed in from the bay and, climbing the land, swept away everything in its path, covering the town with water to the tops of the houses. This monster wave then receded, but rushed back five times. In 1751, an earthquake wave suddenly entered Callao, the port of Lima, Peru, sinking twenty-three vessels and driving a frigate inland, where it was left high and dry. This wave extended across the Pacific to the Hawaiian Islands, a distance of 6,000 miles. On the 13th of August, 1866, an earthquake wave, that started a short distance from shore, produced a number of earthquake waves sixty feet high that reached the coast of Peru half an hour after the principal earthquake shock. These waves reached Coquimbo, 800 miles distant, in about three hours, and Honolulu, on the Sandwich Islands, 5,520 miles distant, in twelve hours, and the coast of Japan, more than 10,000 miles distant, on the next day. Le Conte remarks that these waves would have encircled the earth, had it not been for the barrier interposed by the Andes. Another great seaquake, known as the Iquiqui seaquake, during 1868 in the same neighborhood damaged severely the towns of north Chile and southern Peru. While, however, there is difficulty in readily observing the earthquake waves that form in the deep ocean, yet such is at times the violence of an earthquake that there is no difficulty in detecting its presence, even in deep water. Dr. Rudolph has made a careful study of the evidences of earthquakes produced in the deep sea, from a careful examination of a great number of the logs of ships. Logs, as everybody knows, are books in which the captain or commanding officer makes careful entries of all important happenings to the vessel, conditions of the weather and of the sea. From this source Dr. Rudolph obtained considerable information of much value concerning these phenomena. I have already called your attention to portion of the Atlantic Ocean lying near the Equator, in the warmest part of the ocean, between Africa and South America, as being a region especially liable to submarine volcanic showers. While, generally speaking, there is nothing in this region to indicate the probability of submarine disturbance, yet suddenly, if a vessel happens to pass directly over the point of origin of the quake, there ensues a great quaking or quivering. Loose objects on the ship begin to shake and clatter. Noises arise from some invisible point deep down in the ocean. The disturbance grows, the noises begin to resemble distant thunder, the ship trembles and staggers as though it had struck rocks, and many believe she is about to go down; when, as suddenly as it began, the commotion ceases, the noises stop, and the ship shapes her course as calmly, and as gallantly, as before. Rudolph gives two excellent examples of seaquakes in this region, both of which were, doubtless, due to submarine eruptions. On the 25th of January, 1859, as the ship Florence was Another of the log books examined by Rudolph was that of a ship in the same part of the Atlantic Ocean. This record showed that suddenly on a morning, in 1883, strange noises were heard that soon increased and became not unlike the firing of great guns or the peals of distant thunder. The ship vibrated as if its anchor had been suddenly let go, and at the same time a feeling came over all the crew, as if they had been electrified. In some cases the vibrations were sufficiently severe to throw heavy objects from the deck, as appears in an account given by a French geologist of a quake in the Mediterranean off the shores of Asia Minor. "Our ship was over the epicentre," Where the seaquake is produced by a strong submarine volcanic eruption, there is a violent commotion of the water itself, so that a vessel passing over such a point may be greatly injured, and, indeed, even destroyed. Such disasters, however, are fortunately exceedingly rare. Among other common effects of seaquakes is the destruction of fish already mentioned by the sudden blow to the water stunning and killing them, just as the explosion of dynamite or other high explosives does in a lake or pond. The most marked effect, however, of seaquakes is the starting of the great wave on the coasts of continents and islands. There are certain parts of the ocean that are especially liable to seaquakes. Some of the more important of these, as shown by Rudolph's researches, are: The region already referred to in the narrowest parts of the Atlantic Ocean between Africa and South America almost immediately under the equator. Here there are two well marked regions. One is in lat. 1° N., long. 30° W., where there is a submarine ridge, the tops of which form what are known as St. Paul's Rock. The ocean here is very deep, the slopes of the ridge descending rapidly. It is on these slopes that earthquakes are very apt to occur just as they do on the steep slopes of mountain ranges. The other region, called by Rudolph the Equatorial District, lies a little further to the east on both sides of the equator in long. 20° W. It appears from Rudolph's researches that between 1845 and 1893 no less than thirty-seven seaquakes were reported in the logs of ships in the neighborhood of St. Paul's Rock, and between 1747 and 1890, in the equatorial district, there were forty-nine seaquakes. It must not be supposed, however, that these were all the quakes in the regions during these times, since, of course, many shocks must have happened that were not felt even by vessels in the neighborhood and many more, when this portion of the ocean was free from any craft. In the North Atlantic there is a portion of the ocean's bed known as the West Indies Deep. Here the bed is marked by great depths and by many irregularities and is, therefore, a region where seaquakes are common. Still another district is found in the North Atlantic in the neighborhood of the Azores. This is the region in which the Lisbon earthquake is believed to have started. Another region where seaquakes are common is in the Pacific along the coast of South America from the equator to 45° S. lat. "Here," says Dutton, "especially in the vicinity of the angle where the Peruvian and Chilian coasts meet have they been most numerous and formidable. The harbors of Pisco, Arica, Tacua, Iquiqui, and Pisago have been repeatedly subject to these destructive invasions." There has been considerable discussion as to the exact manner in which the earthquake waves are set up. Whatever be the cause or causes, the action must be sudden, such as an upheaval of the bottom, or a collapse of a large section of the ocean's bed, with a dropping of a vast body of water. Or, possibly, a submarine volcanic eruption causes the water to lift suddenly under pressure of steam generated by escape of the lava and other hot volcanic products. Dr. Rudolph attributes earthquake waves to submarine volcanic eruptions alone. It would seem, however, as if each one of the other things above referred to might at times be the direct cause. |