ANIMALS NATURALLY PROVIDED WITH DWELLINGS — ANIMALS WHO INCREASE THEIR NATURAL PROTECTION BY THE ADDITION OF FOREIGN BODIES — ANIMALS WHO ESTABLISH THEIR HOME IN THE NATURAL OR ARTIFICIAL DWELLINGS OF OTHERS — CLASSIFICATION OF ARTIFICIAL SHELTERS — HOLLOWED DWELLINGS — RUDIMENTARY BURROWS — CAREFULLY-DISPOSED BURROWS — BURROWS WITH BARNS ADJOINED — DWELLINGS HOLLOWED OUT IN WOOD — WOVEN DWELLINGS — RUDIMENTS OF THIS INDUSTRY — DWELLINGS FORMED OF COARSELY-ENTANGLED MATERIALS — DWELLINGS WOVEN OF FLEXIBLE SUBSTANCES — DWELLINGS WOVEN WITH GREATER ART — THE ART OF SEWING AMONG BIRDS — MODIFICATIONS OF DWELLINGS ACCORDING TO SEASON AND CLIMATE — BUILT DWELLINGS — PAPER NESTS — GELATINE NESTS — CONSTRUCTIONS BUILT OF EARTH — SOLITARY MASONS — MASONS WORKING IN ASSOCIATION — INDIVIDUAL SKILL AND REFLECTION — DWELLINGS BUILT OF HARD MATERIALS UNITED BY MORTAR — THE DAMS OF BEAVERS. Animals construct dwellings either to protect themselves from the cold, heat, rain, and other chances of the weather, or to retire to at moments when the search for food does not compel them to be outside and exposed to the attacks of enemies. Some inhabit In this series, as in those which we have already studied, we shall find every stage from that of beings provided for by nature, and endowed with a special organ which secretes for them a shelter, up to those who are constrained by necessity to seek in their own intelligence an expedient to repair the forgetfulness of nature. These productions, so different in their origin, can only be compared from the point of view of the part they play; there are analogies between them but not the least homology. Animals naturally provided with dwellings. — Nearly all the Mollusca are enveloped by a very hard calcareous case, secreted by their mantle: this shell, which is a movable house, they bear about with them and retire into at the slightest warning. Caterpillars which are about to be transformed into chrysalides weave a cocoon, a very close dwelling in which they can go through their metamorphosis far from exterior troubles. It is an organic form of dwelling, or produced by an organ. It is not necessary to multiply examples of this kind; they are extremely numerous. In the same category must be ranged the cells issuing from the wax-glands which supply Bees with materials for their combs in which they I do not wish to insist on creations of this kind which are independent of the animal’s will and reflection. Near these facts must be placed those in which animals, still using a natural secretion, yet endeavour to obtain ingenious advantages from it unknown by related species. There is, for example, the Macropus viridi-auratus, or Paradise-fish, which blows air bubbles in the mucus produced from its mouth. This mucus becomes fairly resistant, and all the bubbles imprisoned and sticking aside by side at last form a floor. It is beneath this floating shelter that the fish suspends its eggs for its little ones to undergo their early development. Animals who increase their natural protection by the addition of foreign bodies. — Certain tubicolar Annelids, whose skin furnishes abundant mucus which does not become sufficiently hard to form an efficacious protection, utilise it to weld together and unite around them neighbouring substances, grains of sand, fragments of shell, etc. They thus construct a case which both resembles formations by special organs and manufacture by the aid of foreign materials. The larvÆ of Phryganea, who lead an aquatic life, use this method to separate themselves from the world and prepare tubes in which to dwell. (Fig. 18.) All the fragments carried down by the stream are good for their labours on condition only that they are denser than the water. They take possession of Animals who establish their home in the natural or artificial dwellings of others. — Between the beings whom nature has endowed with a shelter and those who construct it by their own industry, we may intercept those who, deprived of a natural asylum and not having the inclination or the power to make one, utilise the dwellings of others, either when the latter still inhabit them, or when they are empty on account of the death or departure of the owner. In the natural sciences there is no group of facts around which may be traced a clear boundary; each of them For birds like the Cuckoo and the Molothrus it is not possible to plead attenuating circumstances. They occupy a place in an inhabited house without paying any sort of rent. Every one knows the Cuckoo’s audacity. The female lays her eggs in different nests and troubles herself no further about their fate. She seeks for her offspring a shelter which In North America a kind of Starling, the Molothrus pecoris, commonly called the Cow-bird, acts in the same careless fashion. It lives in the midst of herds, and owes its specific name to this custom; it feeds on the parasites on the skin of cattle. This bird constructs no nest. At the moment of laying the female seeks out an inhabited dwelling, and when the owner is absent she furtively lays an egg there. The young intruder breaks his shell after four days’ incubation, that is to say, usually much before the legitimate children; and the parents, in order to silence the beak of the stranger who, without shame, claims his share with loud cries, neglect their own brood which have not yet appeared, and which they abandon. Their foster children repay them, however, with the blackest ingratitude. As soon as the little Molothrus feels his body covered with feathers and his little wings strong enough to sustain him he quits his adopted parents without consideration. These birds show a love of independence very rare among animals, with whom conjugal fidelity has become proverbial; they do not unite in couples; unions are free, and the mother hastens to deliver herself from the cares of bringing up her young in the manner we have seen. Two other species of Molothrus have the same habit, as have the American Cuckoo and the Golden Cuckoo of South Africa. The habits of the Molothrus bovariensis, a closely allied Argentine Cow-bird, have been carefully studied by Mr. W. H. Hudson, who has also some interesting remarks as to the vestiges of the nesting instinct in The Rhodius anarus, a fish of European rivers, also ensures a quiet retreat for his offspring by a method which is not less indiscreet. At the period of spawning, a male chooses a female companion and with great vigilance keeps off all those who wish to approach her. When the laying becomes imminent, the Rhodius, swimming up and down at the bottom of the stream, at length discovers a Unio. The bivalve is asleep with his shell ajar, not suspecting the plot which is being formed against him. It is a question of nothing less than of transforming him into furnished lodgings. The female fish bears underneath her tail a prolongation of the oviduct; she introduces it delicately between the Mollusc’s valves and allows an egg to fall between his branchial folds. In his turn the male approaches, shakes himself over it, and fertilises it. Then the couple depart in search of another Unio, to whom to confide another representative of the race. The egg, well sheltered against Other animals, more respectful of property, avoid using another’s dwelling until it is abandoned by its proprietor, and no reproach of indelicacy can be addressed to the Gobius minutus, a fish which lives on our coasts at the mouth of rivers. The female lays beneath overturned shells, remains of Oysters, or Cardium shells. The valve is buried beneath several centimetres of sand, which supports it like a vault. It forms a solid roof, beneath which the eggs undergo their evolution. Sometimes the male remains by the little chamber to watch over their fate. It is possible to distinguish the two holes of entrance and exit which mark his habitual passage. The Hermit-crab perhaps knows best how to take advantage of old clothes. (Fig. 19.) He collects shells of Gasteropods, abandoned flotsam, the first inhabitant of which has died. The Hermit-crab (Pagurus Bernhardus) is a Decapod Crustacean — that is to say, he resembles a very small Crab. But his inveterate habit during so many generations of sheltering his abdomen in a shell prevents this part from being encrusted with lime and becoming hard. The legs and the head remain in the ordinary condition outside the house, and the animal moves bearing it everywhere with him; on the least warning he retires into it entirely. But the Crustacean grows. When young he had chosen a small shell. A Mollusc, in growing, makes his house grow with him. The Hermit-crab cannot do this, and when his dwelling has become too narrow he abandons it for one that is more comfortable. The Great Horned Owl likewise does not construct a nest; but takes possession of the dwellings abandoned by others. These birds utilise for laying their eggs sometimes the nest of a Crow or a Dove, sometimes the lair which a Squirrel had considered too dilapidated. The female, without troubling about the bad state of these ruins, or taking pains to repair them, lays her eggs here and sits on them. Classification of artificial shelters. — It is time to turn to animals who have more regard for comfort, and who erect dwellings for themselves or their offspring. These dwellings may be divided into three groups: (1) Those which are hollowed in earth or in wood; (2) those which in the simplest form result from the division of material of any kind; then, as a complication, of materials bound together; then, as a last refinement, of delicate materials, such as blades of grass or threads of wool woven together; such are the nests of certain birds and the tents of nomads; (3) those which are built of moist earth which becomes hard on drying; the perfection of this method consists of piling up hard fragments, pieces of wood or ashlar, the moist earth being only a mortar which unites the hard parts together. Animals exercise with varying success these different methods, all of which Man still practises. It is known that at a certain epoch of the year Crabs abandon their hard carapaces. This phenomenon is known by the name of the moult; they remain in this condition for some time; it is the period during which they grow; then their integuments are encrusted anew with lime and again become resistant. While they are thus deprived of their ordinary protection they are exposed to a crowd of dangers, and they are so well aware of this that they remain hidden beneath rocks and pebbles. A crab of Guadeloupe, called Gecarinus ruricola, escapes the perils of this situation, thanks to its kind of life and its habit of hollowing out a burrow to live in while it is deprived of its habitual defence. This Crustacean lives on the earth, at a distance of about ten or twelve kilometres from the sea-shore, and nourishes itself on animal and vegetable remains. It approaches the water only at the period of laying eggs, turning towards the coast in the months of February and March. This migration does not take place, like some others, in compact bands; each follows the road in independence, and preserves a certain amount of liberty with regard to the path and the epoch of the journey. They lead an aquatic life till May or June; then the female abandons her little ones, who had begun their development attached to her claws, and Speaking generally, birds are accomplished architects. Certain of them are, however, content with a rudimentary cavern. There is no question here of those who retire to clefts in the rock or in trunks of trees, for in these cases the cavity is only the support of the true house, and it is in the construction of this that the artist reveals his talent. I wish to speak of animals which remain in a burrow without making a nest there. A Parroquet of New Zealand called the Kakapo (Strigops habroptilus) thus dwells in natural or hollowed excavations. It is only found in a restricted portion of the island and leads a miserable life there, habitually staying in the earth and pursued by numerous enemies, especially half-wild dogs. It tries to hold its own, but its wings and beak do not suffice to protect it, and the race would have completely disappeared if these birds were not able to resist, owing to the prudence with which they stay within their dwellings. They profit by a natural retreat, or one constructed in rocks or beneath roots of trees; they only come out when impelled by A large number of animals also hollow out shelters for their eggs, with the double object of maintaining them at a constant temperature and of concealing them. Most reptiles act in this manner. The way in which a Tortoise, the Cistudo lunaria, prepares its nest is extremely curious. When the time for this labour arrives, the tortoise chooses a site. It commences by boring in the earth with the end of its tail, the muscles of which are held firmly contracted; it turns the tail like a gimlet and succeeds in making a conical hole. Gradually the depth of the hole becomes equal to the length of the tail, and the tool then becomes useless. The Cistudo enlarges the cavity with the help of its posterior legs. Using them alternately it withdraws the earth and kicks it away, then piles up this rubbish on the edge of the hole, arranging it so as to form a circular rampart. Soon the posterior members can take nothing more from the too distant bottom. The moment for laying has now come. As soon as the egg arrives at the cloaca one of the feet seizes it and lowers it gently into the nest, while the second foot seizes another egg, which during this time had appeared at the orifice. This manipulation lasts until the end of the operation, when the tortoise buries all its family, and to flatten the prominence which results she strikes it repeatedly with her plastron, raising herself on her legs. It is not only land animals which adopt this custom of living in the earth, and there sheltering their offspring. Fish also make retreats on the bank or at the bottom. To mention only one case, the Bullhead Other animals when digging have a double object; they wish to shelter themselves, and at the same time to find the water which they need for themselves or for the development of their young. It is well known that Frogs and Toads generally go in the spring to lay their eggs in streams and ponds. A Batrachian of Brazil and the hot regions of South America, the Cystignathus ocellatus, no doubt fearing too many dangers for the spawn if deposited in the open water, employs the artifice of hollowing, not far from the bank, a hole the bottom of which is filled by infiltration. It there places its eggs, and the little ones on their birth can lead an aquatic life while being guaranteed against its risks. A terrestrial Crab, the Cardisoma carnifex, found in Bengal and the Antilles, acts in the same manner; but in this case it has in view its own convenience and not care for its offspring. Its habitat is especially in low-lying spots near the shore, where water may be found at a trifling depth beneath the soil. To establish its dwelling, the Crustacean first buries itself until it reaches the liquid level. Arrived at this point, it makes a large lair in the soft soil, and effects communication with the outside by various openings. It The dipnoid Protopterus, which inhabits the marshes of Senegal and Gambia, is curious in more than one respect. Firstly, it can breathe oxygen, whether, like other fish, it finds it dissolved in water or in the atmospheric air. When during the summer the marshes in which it lives dry up, it takes refuge in the mud at the bottom, which hardens and imprisons it, and it thus remains curled up until the time when the water after the rainy season has softened the earth which surrounds it. This fact had been known for some time; travellers had brought back lumps of dried earth of varied size, the largest about as big as two fists. On opening them the same fish was always found within, and the chamber in which it is contained was lined with a sort of cocoon, having the appearance of dry gelatine. DumÉril was able to observe one of these animals in captivity. At the period corresponding to the dry period of its own country, the Protopterus buried itself in the mud which had been placed at the bottom of the aquarium. In order to realise the conditions found in nature, the water which covered it was gradually withdrawn. The earth hardened in drying, and when broken the recluse was seen surrounded by hardened mucus, exactly like those which came from Senegal. Darwin has observed and described82 how a little Lacertilian, the Conolophus subcristatus, conducts its work of mining and digging. It establishes its burrow in a soft tufa, and directs it almost horizontally, hollowing it out in such a way that the axis of the hole makes a very small angle with the soil. This reptile does not foolishly expend its strength in this troublesome labour. It only works with one side of its body at a time, allowing the other side to rest. For instance, the right anterior leg sets to work digging, while the posterior leg on the same side throws out the earth. When fatigued, the left legs come into play, allowing the others to repose. Other animals, without building their cavern with remarkable skill, show much sagacity in the choice of The Trap-door Spider (Mygale henzii, Girard), which is widely diffused in California, forms a simple shaft-like burrow, but, like the European Trap-door Spider, it is very skilful in forming an entrance and When the spider has decided upon a location, which is always in clay, adobe or stiff soil, he excavates the shaft by means of the sharp horns at the end of his mandibles, which are his pick and shovel and mining tools. The earth is held between the mandibles and carried to the surface. When the shaft is of the required size, the spider smoothes and glazes the wall with a fluid which is secreted by itself. Then the whole shaft is covered with a silken paper lining, spun from the animal’s spinnerets. The door at the top of the shaft is made of several alternate layers of silk and earth, and is supplied with an elastic and ingenious hinge, and fits closely in a groove around the rim of the tube. This door simulates the surface on which it lies, and is distinguishable from it only by a careful scrutiny. The clever spider even glues earth and bits of small plants The spider generally stations itself at the bottom of the tube. When, by tapping on the door, or by other means, a gentle vibration is caused, the spider runs to the top of his nest, raises the lid, looks out and reconnoitres. If a small creature is seen, it is seized and devoured. If the invader is more formidable, the door is quickly closed, seized and held down by the spider, so that much force is required to lever it open. Then, with the intruder looking down upon him, the spider drops to the bottom of his shaft. It has been found by many experiments that when the door of his nest is removed, the spider can renew it five times — never more than that. Within these limitations, the door torn off in the evening was found replaced by a new one in the morning. Each successive renewal showed, however, a greater proportion of earth, and a smaller proportion of silk, until finally the fifth door had barely enough silk to hold the earth together. The sixth attempt, if made, was a failure, because the spinnerets had exhausted their supply of the web fluid. When the poor persecuted spider finds his domicile thus open and defenceless, he is compelled to leave it, and wait until his stock of web fluid is renewed.85 Skilful diggers prepare burrows with several entrances; some even arrange several rooms, each for a special object. The Otter seeks its food in the water, Marmots also are not afraid of the work which will assure them a warm and safe refuge in the regions they inhabit, where the climate is rough. In summer they ascend the Alps to a height of 2,500 to 3,000 metres and rapidly hollow a burrow like that for winter time, which I am about to describe, but smaller and less comfortable. They retire into it during bad weather or to pass the night. When the snow chases them away and causes them to descend to a lower zone, they think about constructing a genuine house in which to shut themselves during the winter and to sleep. Twelve or fifteen of these little animals unite their efforts to make first a horizontal passage, In solitary woods or roads the Badger (Meles), who does not like noise, prepares for himself a peaceful retreat, clean and well ventilated, composed of a vast chamber situated about a metre and a half beneath the surface. He spares no pains over it, and makes it communicate with the external world by seven or eight very long passages, so that the points where they open are about thirty paces distant from one another. In this way, if an enemy discovers one of them and introduces himself into the Badger’s home, the Badger can still take flight through one of the other passages. In ordinary times they serve for the aËration of the central room. The animal attaches considerable importance to this. He is also very clean in his habits, and every day may be seen coming out for little walks, having an object of an opposite nature to the search for food. This praiseworthy habit is, as we shall see, exploited by the Fox in an unworthy manner. The Fox has many misdeeds on his conscience, but his conduct towards the Badger is peculiarly indelicate. The Fox is a skilful digger, and when he cannot avoid it, he can hollow out a house with several rooms. The dwelling has numerous openings, both as a measure of prudence and of hygiene, for this arrangement enables the air to be renewed. He The Badger’s dwelling appears to the Fox particularly enviable. In order to dislodge the proprietor he adopts the following plan. Knowing that the latter can tolerate no ordure near his home, he chooses as a place of retirement one of the passages which lead to the chamber of the peaceful recluse. He insists repeatedly, until at last the Badger, insulted by this grossness, and suffocated by the odour, decides to move elsewhere and hollow a fresh palace. The Fox is only waiting for this, and installs himself without ceremony. The Vizcacha (Lagostomus trichodactylus) is a large Rodent inhabiting a vast extent of country in the pampas of La Plata, Patagonia, etc. Unlike most other burrowing species, the Vizcacha prefers to work on open level spots. On the great grassy plains it is The Vizcacha lives in small communities of from twenty to thirty members, in a village of deep-chambered burrows, some twelve or fifteen in number, with large pit-like entrances closely grouped together, and as the Vizcachera, as this village is called, endures for an indefinitely long period, the earth which is constantly brought up forms an irregular mound thirty or forty feet in diameter, and from fifteen to thirty inches above the level of the road; this mound serves to protect the dwelling from floods on low ground. A clearing is made all round the abode and all rubbish thrown on the mound; the Vizcachas thus have a smooth turf on which to disport themselves, and are freed from the danger of lurking enemies. The entire village occupies an area of one hundred to two hundred square feet of ground. The burrows vary greatly in extent; usually in a Vizcachera there are several that, at a distance of from four to six feet from the entrance, open into large circular chambers. From these chambers other burrows diverge in all directions, some running horizontally, others obliquely downwards to a maximum depth of six feet from the surface; some of these galleries communicate with those of other burrows. On viewing a Vizcachera closely, the first thing that strikes the observer is the enormous size of the entrances to the central burrows in the mound; there are usually several smaller outside burrows. The It is not easy to tell what induces a Vizcacha to found a new community, for they increase very slowly, and are very fond of each other’s society. It is invariably one individual alone who founds the new village. If it were for the sake of better pasture he would remove to a considerable distance, but he merely goes from forty to sixty yards off to begin operations. Sooner or later, perhaps after many months, other individuals join the solitary Vizcacha, and they become the parents of innumerable generations in the same village: old men, who have lived all their lives in one district, remember that many of the Vizcacheras around them existed when they were children. It is always a male who begins the new village. Although he does not always adopt the same method, he usually works very straight into the earth, digging a hole twelve or fourteen inches wide, but not so deep, at an angle of about 25° with the surface. After he has progressed inwards for a few feet, the animal is no longer content merely to scatter the loose earth; he cleans it away in a straight line from the entrance, and scratches so much on this line, apparently to make the slope gentler, that he soon forms a trench a foot or more in depth, and often three or four feet in length. This facilitates the conveyance of the loose earth as far as possible from the entrance of the burrow. But after a while the animal is unwilling that earth should accumulate even at the end of this long passage, and proceeds to form two additional On the pampas a wide-mouthed burrow possesses a distinct advantage over the more usual shape. The two outer trenches diverge so widely from the mouth that half the earth brought out is cast behind instead of before it, thus creating a mound of equal height about the entrance, by which it is secured from water during great rainfalls, while cattle avoid treading over the great pit-like entrances, though they soon tread and break in the burrows of the Armadillo and other species when these make their homes on perfectly level ground. The Vizcachas do not usually leave their burrows until dark, but in summer they come out before sunset. Usually one of the old males first appears, and sits on some prominent place on the mound, apparently in no haste to begin his evening meal. Other Vizcachas soon begin to appear, each quietly taking up his position at the burrow’s mouth. The females, known by their smaller size and lighter These animals are very sociable, and their sociability extends beyond their own vizcachera. On approaching a vizcachera at night, usually some of the Vizcachas on it scamper off to distant burrows. These are neighbours merely come to pay a friendly visit. The intercourse is so frequent that little straight paths are formed from one village to another. Their social instinct leads members of one village to assist those of another when in trouble. Thus, if a vizcachera is covered over with earth in order to destroy the animals within, Vizcachas from distant burrows will subsequently be found zealously digging out their friends. The hospitality of the Vizcacha does not, however, extend to his burrow; he has a very strong feeling with regard to the sanctity of the burrow. A Vizcacha never enters another’s burrow, and if by chance driven into one by dogs will emerge speedily, apparently finding that the danger within is greater than the danger without. In connection with the sociability of the Vizcacha, we must take into consideration the fact that Vizcachas possess a wonderfully varied and expressive language, and are engaged in perpetual discussion all night long.86 Dwellings hollowed out in wood. — It is not only the soil which may serve for retreat; wood serves as an asylum for numerous animals, who bore it, and find in it both food and shelter. In this class must be placed a large number of Worms, Insects, and Crustaceans. One of these last, the Chelura terebrans, a little Amphipod, constitutes a great danger for the works of man. It attacks piles sunken to support structures, and undermines them to such a degree that they eventually fall. Wood is formed of concentric layers alternately composed of large vessels formed during the summer, and smaller vessels formed during the winter. The latter zones are more resistant, the former are softer. When one of these Crustaceans attacks a pile, it first bores a little horizontal passage, An insect, the Xylocopa violacea (Fig. 22), related to our Humble-bee, from which it differs in several anatomical characters, and by the dark violet tint of its wings, brings an improvement to the formation of the shelter which it makes in wood for its larvÆ. Instead of hollowing a mere retreat to place there all its eggs indiscriminately, it divides them into compartments, separated by horizontal partitions. It is the female alone who accomplishes this task, connected with the function of perpetuating the race. She chooses an old tree-trunk, a pole, or the post of a fence, exposed to the sun and already worm-eaten, so that her labour may be lightened. She first attacks the wood perpendicularly to the surface, then suddenly turns and directs downwards the passage, the Woven dwellings. — The second class of habitation, which I have called the woven dwelling, proceeds at first from the parcelling up of substances, then of objects capable of being entangled like wisps of wood or straw, then of fine and supple materials which the artisan can work together in a regular manner, that is to say by felting or weaving. Facts will show us the successive stages of improvement which have been introduced into this industry. I will begin with the more rudimentary. Rudiments of this industry. — There are, first, cases in which the will of the animal does not intervene, or at least is very slightly manifested. The creature is found covered and protected by foreign bodies which are often living beings. Spider-crabs (MaÏa), for example, have their carapaces covered with algÆ and hydroids of all sorts. Thus garnished, the Crustaceans have the advantage of not being recognised from afar when they go hunting, since beneath this fleece they resemble some rock. H. Fol has observed at Villefranche-sur-Mer a MaÏa so buried beneath this vegetation that it was impossible at first sight to distinguish it from the stones around. Under these conditions the animal submits to a shelter rather than creates it. Yet it is not so passive as one might at first be led to suppose. When the algÆ which A crab with a lumpy thing on its back. The Sponge-crab (Dromia vulgaris) also practises this method of shelter. It seizes a large sponge and maintains it firmly over its carapace with the help of the posterior pair of limbs. The sponge continues to prosper and to spread over the Crustacean who has adopted it. (Fig. 23.) The two beings do not seem to be definitely fixed to each other; the contact of a sudden wave will separate them. When the divorce is effected, the Dromia immediately throws itself on its cherished covering and replaces it. M. KÜnckel d’Herculais tells of one of these curious In these two cases which I have brought forward to exhibit the rudiments of this industry, the animals’ reflection and will play but a small part; even in the Dromia custom is so inveterate in the race that it has reacted on the animal’s organisation, and its four posterior legs are profoundly modified for the purpose of firmly holding the sheltering sponge; they no longer serve for swimming or walking. The animals of which I have now to speak possess more initiative; although all do not act with the same success, or show themselves equally skilful. Let us turn first to the least experienced. An Australian bird, the Catheturus Lathami, as described by Gould, is still in the rudiments, and limits itself to preparing an enormous pile of leaves. It begins its work some weeks before laying its eggs; with its claws it pushes behind it all the dead leaves which fall on the earth and brings them into a heap. The bird throws new material on the summit until the hole is of suitable height. This detritus ferments when left to itself, and a gentle heat is developed in the centre of the edifice. The Catheturus returns to lay near this coarse shelter; it then takes each egg and buries it in the heap, the larger end uppermost. It places a new layer above, and quits its labour for good. Incubation takes place favoured by the uniform heat of this decomposing Birds are not alone in constructing temporary dwellings in which to lay their eggs; some Fish are equally artistic in this kind of industry, and even certain Reptiles. The Alligator of the Mississippi would not perhaps at first be regarded as a model of maternal foresight. Yet the female constructs a genuine nest. She seeks a very inaccessible spot in the midst of brushwood and thickets of reeds. With her jaw she carries thither boughs which she arranges on the soil and covers with leaves. She lays her eggs and conceals them with care beneath vegetable remains. Not yet considering her work completed, she stays in the neighbourhood watching with jealous eye the thicket which shelters the dear deposit, and never ceases to mount guard threateningly until the day when her young ones can follow her into the stream. A hymenopterous relative of the Bees, the Megachile, cuts out in rose-leaves fragments of appropriate form which it bears away to a small hole in a tree, an abandoned mouse nest or some similar cavity. There it rolls them, works them up, and arranges them with much art, so as to manufacture what resemble thimbles, which it fills with honey and in which it lays.89 (Fig. 24.) The retreats of nocturnal birds of prey do not differ in method of construction from these two kinds of nests. They are holes in trees, in ruins, in old walls, and are lined with soft and warm material. These dwellings are related, not to the type of the hollowed cave, but to that of the habitation manufactured from mingled materials. They constitute an inferior form in which the pieces are not firmly bound together but need support throughout. The cavity is the support which sustains the real house. Dwellings formed of coarsely-entangled materials. — Diurnal birds of prey are the first animals who practise skilfully the twining of materials. Their nests, which have received the name of eyries, are not yet masterpieces of architecture, and reveal the beginning of the industry which is pushed so far by other birds. Usually situated in wild and inaccessible spots, the young are there in safety when their parents are away on distant expeditions. The abrupt summits of cliffs and the tops of the highest forest trees are the favourite spots chosen by the great birds of prey. The eyrie generally consists of a mass of dry branches which cross and mutually support one another, constituting a whole which is fairly resistant. Even these primitive nests are not, however, without more complicated details of interest. Thus Mr. Denis Gale wrote to Bendire concerning the Golden Eagle in America: “Here in Colorado, in the numerous glades running from the valleys into the foothills, high inaccessible ledges are quite frequently met with which afford the Eagles secure sites for their The abodes of Squirrels, though exhibiting more art, are constructions of the same nature; that is to say, they are formed of interlaced sticks. This animal builds its home to shelter itself there in the bad season, to pass the night in it, and to rear its young. Very agile, and not afraid of climbing, it places its domicile near the tops of our highest forest trees. Rather capricious also, and desiring change of residence from time to time, it builds several of them; at least three or four, sometimes more. The materials which it needs are collected on the earth among fallen dead branches, or are torn away from the old abandoned nest of a crow or some other bird. The Squirrel firsts builds a rather hollow floor by intermingling the fragments of wood which it has brought. In this state its dwelling resembles a magpie’s nest. But the fastidious little animal wishes to be better protected and not thus to sleep in the open air. Over this foundation he raises a conical roof; the sticks which form it are very skilfully disposed, and so well interlaced that the whole is impenetrable to rain. The house must still be furnished, and this is done with oriental luxury; that is to say, the entire furniture consists of a carpet, a carpet of very dry moss, which the Squirrel tears from the trunks of trees, and which it piles up so as to have a soft and warm couch. An entrance situated at the lower part gives access to the aËrial castle; it is usually directed towards the east. On the opposite side there is The great Anthropoid Apes have found nothing better for shelter than the Squirrels’ method. It must, however, be taken into account that they have much more difficulty in arranging and maintaining much heavier rooms, and in building up a shelter with larger surface. The Orang-outang, which lives in the virgin forests of the Sunda Archipelago, does not feel the need of constructing a roof against the rain. He is content with a floor established in the midst of a tree, and made of broken and interlaced branches. He piles up on this support a considerable mass of leaves and moss; for the Orang does not sleep seated like the other great apes, but lies down in the manner of Man, as has often been observed when he is in captivity. When he feels the cold he is ingenious enough to cover himself with the leaves of his couch. In Upper and Lower Guinea the Chimpanzee (Troglodytes niger) also establishes his dwelling on trees. He first makes choice of a large horizontal branch, which constitutes a sufficient floor for the agile animal. Above this branch he bends the neighbouring boughs, crosses them, and interlaces them so as to obtain a sort of framework. When The Troglodytes calvus, a relative of the preceding, inhabiting the same regions, as described by Du Chaillu, shows still more skill in raising his roof. A tree is always chosen for support. He breaks off boughs and fastens them by one end to the trunk, by the other to a large branch. To fix all these pieces he employs very strong creepers, which grow in abundance in his forests. Above this framework, which indicates remarkable ingenuity, the animal piles up large leaves, forming in layers well pressed down and quite impenetrable to the rain. The whole has the appearance of an open parasol. The ape sits on a branch beneath his handiwork, supporting himself against the trunk with one arm. He has thus an excellent shelter against the mid-day sun as well as against tropical showers. Male and female each There exists in Australia, the country of zoological singularities, a bird with very curious customs. This is the Satin Bower-bird. The art displayed in this bird’s constructions is not less interesting than the sociability he gives evidence of, and his desire to have for his hours of leisure a shelter adorned to his taste. The bowers which he constructs, and which present on a small scale the appearance of the arbours in our old gardens, are places for re-union and for warbling and courtship, in which the birds stay during the day, when no anxiety leads them to disperse. They are not, properly speaking, nests built for the purpose of rearing young; for at the epoch of love each couple separates and constructs a special retreat in the neighbourhood of the bower. These shelters are always situated in the most retired parts of the forest, and are placed on the earth at the foot of trees. Several couples work together to raise the edifice, the males performing the chief part of the work. At first they establish a slightly convex floor, made with interlaced sticks, intended to keep the place sheltered from the moisture of the soil. The arbour rises in the centre of this first platform. Boughs vertically arranged are interlaced at the base with those of the floor. The birds arrange them in two rows facing each other; they then curve together the upper extremities of these sticks, and fix them so as to obtain a vault. All the prominences in the materials employed are turned towards the outside, so that the Certain Humming-birds also, according to Gould, decorate their dwellings with great taste. “They instinctively fasten thereon,” he stated, “beautiful pieces of flat lichen, the larger pieces in the middle, and the smaller on the part attached to the branch. Now and then a pretty feather is intertwined or fastened to the outer sides, the stem being always so placed that the feather stands out beyond the surface.”94 Dwellings woven of flexible substances. — In spite of their lack of skill and the inadequacy of their organs for this kind of work, Fish are not the most awkward architects. The species which construct nests for laying in are fairly numerous; the classical case of the Stickleback is always quoted, but this is not the only animal of its class to possess the secret of the manufacture of a shelter for its eggs. A fish of Java, the Gourami (Osphronemus olfax), establishes an ovoid nest with the leaves of aquatic plants woven together. It makes its work about the size of a fist, takes no rest until it is completed, and is able to finish it in five or six days. It is the male alone who weaves this dwelling; when it is ready a female comes to lay there, and generally fills it; it may contain from six hundred to a thousand eggs. In the sea of Sargasso lives a fish which has received the name of the Antennarius marmoratus. Its In Guiana and Brazil another species, the Choestostomus pictus, is found, which is equally skilful. With aquatic plants it constructs a spherical nest and arranges it in the midst of the reeds, level with the water. At the lower part a hole is left, through which the female comes to lay. After fertilisation, the couple, as is rarely found among fish, remain in the neighbourhood of their offspring to assist them if necessary. This praiseworthy sentiment is often the cause of their ruin. The inhabitants of the banks speculate on the love of these fish for their offspring to gain possession of them. It is sufficient to place a basket near the entrance of the dwelling, which is then lightly struck. The animal, threatened in its affections, darts furiously forward with bristling spines and throws itself into the trap. Dwellings woven with greater art. — Without doubt the class of Birds furnishes the most expert artisans in the industry of the woven dwelling. In our own country we may see them seeking every day to right and left, carrying a morsel of straw, a pinch of moss, a hair from a horse’s tail, or a tuft of wool caught in a bush. They intermingle these materials, making the framework of the construction with the coarser pieces, keeping those that are warmer and more delicate for the interior. These nests, attached to a fork in a branch or in a shrub, hidden in the depth of a thicket, are little masterpieces of skill and patience. To describe every form and every method would fill a volume. But I cannot pass in silence those which reveal a science sure of itself, and which are not very inferior to what man can do in this line. The Lithuanian Titmouse (Ægithalus pendulinus), whose The American Baltimore Oriole, also called the Baltimore Bird, is a distinguished weaver. With strong stalks and hemp or flax, fastened round two forked twigs corresponding to the proposed width of nest, it makes a very delicate sort of mat, weaving into it quantities of loose tow. The form of the nest might be compared to that of a ham; it is attached by the narrow portion to a small branch, the large part being below. An opening exists at the lower end of the dwelling, and the interior is carefully lined with soft substances, well interwoven with the outward netting, and it is finished with an external layer of horse-hair, while the whole is protected from sun and rain by a natural canopy of leaves. The Rufous-necked Weaver Bird, as described by Brehm, shows itself equally clever. Its nest is woven with extreme delicacy, and resembles a long-necked decanter hung up with the opening below. From the bottom of the decanter a strong band attaches the whole to the branch of a tree. (Fig. 28.) The Yellow Weaver Bird of Java, as described by Forbes, constructs very similar retort-shaped nests.96 These birds have no monopoly of these careful When animals apply themselves in association to any work, they nearly always exhibit in it a marked superiority over neighbouring species among whom the individuals work in isolation. The construction of dwellings is no exception, and the nests of the Sociable Weaver Birds of South Africa are the best constructed that can be found. These birds live together in considerable colonies; the members of an association are at least two hundred in number, and sometimes rise to five hundred. The city which they construct is a The industry of the woven dwelling does not flourish among mammals; but there is one which excels in it. This is the Dwarf Mouse (Mus minutus), certainly one of the smallest Rodents. It generally lives amidst reeds and rushes, and it is perhaps this circumstance which has impelled it to construct an aËrial dwelling for its young, not being able to deposit them on the damp and often flooded soil. This retreat is not used in every season; its sole object is for bringing forth the young. It is therefore a genuine nest, not only by the manner in which it is made, but by the object it is intended to serve. The mouse chooses in the midst of its usual domain a tuft with leaves more or less crossed; but not too inextricable, so that there may remain in the midst an empty space, in the centre of which the work will be arranged. Great ingenuity is shown in the preliminaries; the mouse simplifies its task by utilising material within its reach instead of going afar to collect them with trouble. The little animal examines the thicket, and on reflection chooses some The art of sewing among birds. — There are birds which have succeeded in solving a remarkable difficulty. Sewing seems so ingenious an art that it must be reserved for the human species alone. Yet the Tailor Bird, the Orthotomus longicauda, and other species possess the elements of it. They place their nests in a large leaf which they prepare to this end. With their beaks they pierce two rows of holes along the two edges of the leaf; they then pass a stout thread from one side to the other alternately. With this leaf, at first flat, they form a horn in which they weave their nest with cotton or hair. (Fig. 31.) These labours of weaving and sewing are preceded by the spinning of the thread. The bird makes it itself by twisting in its beak spiders’ webs, bits of cotton, and little ends of wool. Sykes found that the threads used for sewing were knotted at the ends.98 It is impossible not to admire animals who have skilfully triumphed over all the obstacles met with in the course of these complicated operations.99 Modifications of dwellings according to season and climate. — A certain number of facts show that these various industries are not fixed and immutable instincts imposed on the species. Certain Birds change the form of their dwelling according to the climate, or according to the season in which they inhabit it. For example, the Crossbill, Loxia tÆnioptera (Fig. 32), does not build its nest according to the same rules in Sweden as in France. It builds in every season. The winter shelter is spherical, constructed with very dry lichens, and it is very large. A very narrow opening, just sufficient for the passage of the owner, prevents the external cold from penetrating within. The summer nests are much smaller, in consequence of a reduction in the thickness of the walls. There is no longer need to fear that the cold will come through them, and the animal gives itself no superfluous trouble. Again, the Baltimore Oriole, which inhabits both the Northern and Southern States of North America, knows very well how to adapt his manner of work to the external circumstances in which he lives. Thus, in the Southern States the nest is woven of delicate materials united in a rather loose fashion, so that the air can circulate freely and keep the interior fresh; it is lined with no warm substance, and the entrance is turned to the west so that the sun only sends into it the oblique evening rays. In the north, on the contrary, the nest is oriented to the south to profit by all the warm sunshine; the walls are thick, without Built dwellings. — The built dwelling, the expression of the highest civilisation, still remains to be studied. Man has only known how to construct this kind of shelter at a comparatively late period in his evolution; and among animals we do not find it widely spread, much less so, certainly, than the two foregoing methods, especially the first. The difficulty of this work is greater, and it only arrives at considerable development among very sociable species, since the united efforts of a great number of individuals are needed to carry it on. There are, however, masons who operate separately; but their constructions are rudimentary. The characteristic of all these works is that they are manufactured with some substance to which the animal gives a determined form while it is still soft, and that in drying it preserves this form and acquires solidity. The matter most usually employed is softened and tempered earth — mortar; but there are animals who use with success more delicate bodies. Two examples will suffice to indicate the nature of these exceptions: the labours of Wasps and those of certain Swallows. Paper nests. — Certain Wasps, by the material of their dwellings, approach the Japanese; they build with paper. This paper or cardboard is very strong and supplies a solid support; moreover, being a bad conductor of heat, it contributes to maintain an equable temperature within the nest. The constructions of these insects, though they do not exhibit the geometric arrangement of those of Bees, are not less interesting. The paper which they employ is manufactured on the spot, as the walls of the cells develop. Gelatine nests. — These are made by certain Swallows who nest in grottoes or cliffs on the edge of the sea. After having collected from the water a gelatinous substance formed either of the spawn of fish or the eggs of Mollusca, they carry this substance on to a perpendicular wall, and apply it to form an arc of a circle. This first deposit being dry, they increase it by sticking on to its edge a new deposit. Gradually the dwelling takes on the appearance of a cup and receives the workers’ eggs. (Fig. 34.) These dwellings are the famous swallows’ nests, so appreciated by the epicures of the extreme East, which are edible in the same way as, for example, caviare. Constructions built of earth — Solitary masons. — Certain animals, whose dwelling participates in the nature of a hollow cavern, make additions to it which claim a place among the constructions with which we are now occupied. The Anthophora parietina is in this group; it is The other animals of which I have to speak are genuine masons, who prepare their mortar by tempering moistened earth. Every one has seen the Swallow in spring working at its nest in the corner of a window. It usually establishes its dwelling in an angle, so that the three existing walls can be utilised, and to have an enclosed space there is need only to add the face. It usually gives to this the form of a quarter of a sphere, and begins it by applying earth more or less mixed with chopped hay against the walls which are to support the edifice. At the summit of the construction a hole is left for entry and exit. During the whole of its sojourn in our country the Swallow uses this dwelling, and even returns to it for many years in succession, as long as its work will support the attacks of time. The faithful return of these birds to their old nest has been many times proved by attaching ribbons to their claws; they have always returned with the distinctive mark. The Chalicodoma, whose name of Mason Bee indicates the industry it exercises, is a hymenopterous relative to our Bees, long since carefully studied by RÉaumur. It does not live in societies like the latter, This hymenopterous insect certainly shows in its acts as an artisan an inevitable instinct: hereditary intelligence has become less personal and less spontaneous. In certain cases, however, the instinct loses its rigidity and automatism. Thus, when a Chalicodoma, at the moment of preparing to accomplish its task, finds an old nest, still capable of repair although dilapidated, it does not hesitate to take possession of it and to silence its assumed innate instinct of building. It profits by the work already done, and is content to fill up the cracks or to re-establish the masonry where defective; then it provisions the renewed cells with honey, and lays its eggs in them. In certain circumstances it shows itself still more sparing of trouble, and boldly rebels against the law which seems to be imposed on it by nature. If it feels itself sufficiently strong, the Chalicodoma throws itself on one of its fellows, a peaceful constructor that has almost completed its work; it chases it away, and takes possession of its property to shelter its own eggs. Instead of manufacturing the cell from bottom to top, it has only to complete it. Such acts evidently show the reflection appearing through instinct. Besides the Swallows, of which I have already spoken, birds offer us several types of skilful construction with tempered earth. A Perch in the Danube also manufactures a dwelling of dried earth. It gives it the form of an elliptic cupola, and prepares a semicircular opening for entry and exit. The bird which shows itself the most skilful mason is probably the Oven-Bird (Furnarius rufus) of Brazil and La Plata. Its name is owing to the form of the nest which it constructs for brooding, and which has the appearance of an oven. It is very skilful and knows how to build a dome of clay without scaffolding, which is not altogether easy. Having chosen for the site of its labours a large horizontal branch, it brings to it a number of little clay balls more or less combined with vegetable dÉbris, works them altogether, and makes a very uniform floor, which is to serve as a platform for the rest of the work. When this is done, and while the foundation is drying, the bird arranges on it a circular border of mortar slightly inclined outwards. This becomes hard; it raises it by a new application, this time inclined inwards. All the other layers which will be placed above this will also be inclined towards the interior of the chamber. As the structure rises, the circle which terminates it above becomes more and more narrow. Soon it is quite small, and the animal, closing it with a little ball of “In favourable seasons, the Oven-birds begin building in the autumn,” Hudson tells us, “and the work is resumed during the winter whenever there is a spell of mild, wet weather. Some of their structures are finished early in winter, others not until spring, everything depending on the weather and the condition of the birds. In cold, dry weather, and when food is scarce, they do not work at all. The site chosen is a stout horizontal branch, or the top of a post, and they also frequently build on a cornice or the roof of a house; and sometimes, but rarely, on the ground. The material used is mud, with the addition of horse hair or slender fibrous rootlets, which make the structure harder and prevent it from cracking. I have frequently seen a bird engaged in building first pick up a thread or hair, then repair to a puddle, where it was worked into a pellet of mud about the size of a filbert, then carried to the nest. When finished the structure is shaped outwardly like a baker’s oven, only with a deeper and narrower entrance. It is always placed very conspicuously, and with the entrance facing a building, if one be near, or if at a roadside it Masons working in association. — Ants have already furnished us with numerous proofs of their intelligence and their prodigious industry. So remote from Man from the anatomical point of view, they are of all animals those whose psychic faculties bring them nearest to him. Sociable like him, they have undergone The different species of Termite are not equally industrious. The T. bellicosus seems to have carried the art of construction to the highest point. All the individuals of the species are not alike; there exists These subterranean passages (c) are the catacombs of the Termites, and have a very close analogy with those of old and populous human cities. Their origin is similar; they are ancient quarries. The insects hollowed them in obtaining the necessary clay for their labours. Later, when the rains come, they serve as drains to carry off the water which might threaten to invade the dwelling. Such is the external wall within which a busy population swarms. On passing to the interior let us first enter the ground-floor. In the centre is found the royal chamber (r). The walls are extremely strong and are supplied with windows for ventilation, and with doors to enable the Termites to render their services. It is necessary to renew the air in this chamber, which constantly contains more than two thousand insects. The openings are large enough for the passage of the workers, but the queen cannot pass through them. She is therefore a prisoner, as immured as a goddess in her temple. The chain which holds her is the prodigious development of her abdomen. As a virgin she could enter, when fertilised she cannot henceforth go out. She continuously elaborates eggs; every moment one appears at the orifice of the oviduct. The king remains near her, The centre of the ground-floor, therefore, is occupied by the royal apartment; around this, and communicating with it by means of numerous entrances, are a number of cells used by the attendants on the queen (s). These little chambers are surrounded by a labyrinth of passages. The central room and its dependencies constitute a solid mass, around which other chambers are grouped. The whole space between it and the general wall is filled by vast storehouses, divided into many very spacious compartments. Within them are piled up the provisions which the Termites harvest every day; they consist especially of gums and the juices of plants, dried and pulverised so as to form a fine powder. Access to this property is given by means of large corridors which cross one another, and conduct to the outside through the horizontal galleries traversing the wall. Above the whole of this ground-floor rests a thick vault of clay, which forms a strong floor for the first storey (B). This is composed of only a single room; it is put to no use, unless to isolate and support the apartments of the second floor, in the arrangement of The second storey rests on the first. To this the eggs are brought, and here the larvÆ go through their evolution. Partitions of clay divide the space into a few large halls (a); these are again subdivided, this time not by earth, which is employed throughout the rest of the building, but by materials of a more delicate kind, which are, moreover, very bad conductors of heat (b). It is a question, in fact, of maintaining these little chambers at an almost constant temperature, favourable for the development of the eggs. The substances utilised for this purpose are fragments of wood and of gum. The Termites glue them together and thus form the walls of these important cells. The arrangement of the top storey (D) is also disposed with a view of protecting the young who are the future of the city. It constitutes the attic, situated just beneath the cupola, and contains absolutely nothing; it simply serves to interpose beneath the summit of the edifice and the storey below a layer of air, which is a bad conductor of heat. The chamber devoted to the young is thus placed between two gaseous layers, a precaution which, combined with the choice of material, places it in the It is difficult to know which to admire most — the audacity and vastness of the labour undertaken by these insects, or the ingenious foresight by which they ensure to their delicate larvÆ a comfortable youth. There can be no doubt that these animals show themselves very superior to Man, taking into consideration his enormous size compared to theirs, in the art of building. Pillars, cupolas, vaults — nothing is too difficult or too complicated for these small and patient labourers.103 The Ants of our own lands do not yield to the Termites in this industry, and their dwellings are models of architecture. As they have been more carefully studied we know more exactly how they work, and the considerable sum of intelligence and initiative which they reveal in the accomplishment of their task. At the foot of hedges, on the outskirts of woods, they raise their frail monuments. The species are not equally skilful, and such differences as we have found in other industries may also be found here. In a general manner it was soon found that Ants do not, like Bees, obey a rigid instinct which The Formica fusca constructs its nest of plastered earth. The different superimposed storeys have been added one by one to the upper part of the old dwelling when the latter became too small for the When, in the council of the republic, it has been resolved to raise a common habitation, the workers operate in a singular manner. All the ants scatter themselves abroad, and with extreme activity take fragments of earth between their mandibles and place them on the summit of the dwelling. After some time the result of this microscopical work appears. The ancient roof, strengthened by all this material, becomes a thick terrace which the insects first cover very evenly. The earth, having been brought in grain by grain, is soft and easy to dig. The construction of the new storey begins at first by the hollowing out of a number of trenches. The ants scrape away in places the terrace which they have just made. They thus diminish the thickness of the layer at the spots where rooms, corridors, etc., are to be formed, and with the material thus obtained they form walls, partitions, and pillars. Soon the entire plan of the new storey may be perceived. It differs essentially from that which Man would adopt; in the latter case the walls would be shown by the hollowing out of the foundations; the work of these Hymenoptera, on the contrary, shows them in relief. These first arrangements made, the six-footed architects have only to complete their constructions by new deposits from Individual skill and reflection. — This personality in work, which reveals the intelligent effort of each, has certainly its inconveniences for the common work. Badly-concerted operations may not succeed, and Huber witnessed an accident due to this cause.105 Two walls facing each other were to be united by an arch. A foolish worker had begun to form a horizontal ledge on the summit of one of the walls without paying attention to the fact that the other wall was very much higher. By continuing the project the ceiling would have come against the middle of the opposite ceiling instead of resting on its summit. Another ant passes, examines affairs with an intelligent air, and evidently considers that this sort of work is absurd. Without consideration for the amour-propre of its unskilful fellow-citizen, it demolishes its work, raises the wall that is too low, and re-makes the construction correctly in the presence This Formica fusca sometimes finds itself in the presence of other difficulties. It may happen that the hall to be roofed is too large and the arch too considerable to allow of the cohesion of the materials employed. The insects soon become aware of the existence of this embarrassing state of things and remedy it in various ways, either by hastily constructing pillars in the centre of the too large room, or by some other method. Ebrard describes an artifice he has seen employed, which shows to what an extent ants can quickly appreciate and take advantage of the most unforeseen circumstances.106 A worker was labouring to cover a large cell; two prominences, parts of opposite walls, were advancing towards each other, but there was still a space of from twelve to fifteen millimetres between them, and it seemed no longer possible to burden the two sides without risking a general downfall. The little mason was much disturbed. A graminaceous plant was growing near. The ant seemed anxious to take advantage of it, for it went to it and climbed up the stalk. After having examined and devised, it set about curving it in the direction of the edifice. To attain this object, it placed a little mass of moist earth on the extremity of the leaf, and fixed it there. Under the influence of this weight flexion was produced, but only at the end. This could not satisfy the insect; Among the Lasius niger the independence of the workers is perhaps still greater; no doubt they do their best to concert their efforts, but they do not succeed so well as if an inevitable instinct impelled them. Notwithstanding the irregularities of the construction, it is possible to recognise in it a whole formed of hollowed, concentric half-spheres; they have been added one after the other to the surface to increase the dwelling. The interval between these clay spheres constitutes a storey, cut up by the partitions which divide it into chambers and communicating galleries; the roofs of the largest halls are supported by numerous pillars. (Fig. 40.) These ants, as Huber has shown, are highly accomplished in the art of constructing a cupola. When they wish to increase their nest by a new layer, they take advantage of the first wet day, the rain serving to agglutinate and unite the materials. They operate in almost the same way as the Formica fusca, though exhibiting more skill and resource as architects; they know better how to calculate beforehand the number of pillars required in a hall of a determined size. As soon as the rain has given the signal for work, they spread themselves abroad and The vaulting is executed by the method already described; horizontal ledges, slanting from the summit of pillar or wall, are formed to meet one another. The insects are intelligent enough to begin their labour at the spots best fitted to give strong support to the overhanging materials, as for instance, at the angle of two walls. There is so much activity among the workers, I have already had occasion to speak of the covered passages and Aphis-pens built by Ants outside their dwellings. Besides these constructions, they also make roads in the fields, tearing up the grass and hollowing out the earth so as to form a beaten path free from the lilliputian bushes in which there would be danger of becoming entangled, on returning to the nest laden with various and often embarrassing burdens. Nor are Ants by any means alone in exhibiting the results of individual skill and reflection. It will, however, be sufficient to mention only one other example, that furnished by Spiders. McCook, in his great work, after elaborately describing and carefully illustrating the skill exhibited in individual cases by Spiders in their aËrial labours, considers himself justified in concluding as follows: — “The manner in which the ends of the radii which terminate upon the herb are wrapped roundabout and braced by the notched zone; the manner in which the wide non-viscid scaffold lines are woven in order to give vantage ground from which to place the close-lying and permanent viscid spirals, upon which the usefulness of the orb depends — all these, to mention no other points, seem to indicate a very delicate perception of those modes (shall I also say principles?) of construction which are continually recognised in the art of the builder, the architect, and the engineer.”107 The Musk-rats of Canada live in colonies on the banks of streams or deep lakes, and construct dwellings which are very well arranged. In their methods we find combined the woven shelter with the house of built earth. Their cabins are established over the highest level of the water and look like little domes. In building them the animals begin by placing reeds in the earth; these they interlace and weave so as to form a sort of vertical mat. They plaster it externally with a layer of mud, which is mixed by means of the paws and smoothed by the tail. At the upper part of the hut the reeds are not pressed together or covered with earth, so that the air may be renewed in the interior. A dwelling of this kind, intended to house six or eight individuals who have combined to build it, may measure up to 65 centimetres in diameter. There is no door directly opening on to the ground. A subterranean gallery starts from the floor and opens out beneath the water. It presents secondary branches, some horizontal, through which the animal goes in search of roots for food, while others descend vertically to pits specially reserved for the disposal of ordure. But it is, above all, the Beaver (Castor fiber) who exhibits the highest qualities as an engineer and mason. This industrious and sagacious Rodent is well adapted to inconvenience the partisans of instinct as an entity, apart from intelligence, which renders Beavers now only live in Canada. A few individuals may, however, still be found on the banks of the lower RhÔne, in Camargue, and on a few other European rivers. Several centuries ago they existed in the neighbourhood of Paris in considerable numbers. The BiÈvre gained its name from the old French word for Beaver, and its resemblance to the English name, as well as to the German (Biber), is striking. In the sixteenth century, according to Bishop Magnus of Upsala, the Beaver was still common on the banks of the Rhine, the Danube, and on the shores of the Black Sea, and in the North it still exercised great art in its constructions. In the twelfth century it was found in Scotland and Wales. If we go back to ancient times, we find that Herodotus mentions that the Budini who lived in the neighbourhood of the Black Sea used the skins of the Beavers, which abounded there, on the borders of their garments; and in the time of Pliny the Beaver was so common there that he speaks of it as the Pontic Beaver. Fossil remains of the Beaver have also been found throughout Europe in conjunction with those of the Mammoth and other extinct animals. But the civilisation of the Beaver has perished in the presence of Man’s civilisation, or rather of his persecution. In regions where it is tracked and disturbed by Man the Beaver lives in couples, and is content to hollow out a burrow like the Otter’s, instead of showing its consummate art. It merely vegetates, They build very well arranged dwellings, although at first sight they look like mere piles of twigs, branches, and logs, heaped in disorder on a small dome of mud. At the edge of a pond each raises his own lodge, and there is no work by the colony in common. If, however, there is a question of inhabiting the bank of a shallow stream, certain preliminary works become necessary. The rodents establish a dam, so that they may possess a large sheet of water which may be of fair depth, and above all constant, not at the mercy of the rise and fall of the stream. A sudden and excessive flood is the one danger likely to prove fatal to these dykes; but even our own constructions are threatened under such circumstances. When the Beavers, tempted by abundance of willows and poplars, of which they eat the bark and utilise the wood in construction, have chosen a site, and have decided to establish a village on the edge of the water, there are several labours to be successively accomplished. Their first desire is to be in possession of a large number of felled trunks of trees. To obtain them they scatter themselves in the forest bordering the stream and attack saplings of from twenty to thirty centimetres in diameter. They are equipped for this purpose. With their powerful incisors, worked by strong jaws, they can soon gnaw through a tree of this size. But they are capable of attacking trees, even more than 100 cc. in circumference Mr. Lewis H. Morgan studied the American Beaver with great care and thoroughness, more especially on the south-west shore of Lake Superior; he devotes fifty pages to the dams, and it is worth while to quote his preliminary remarks regarding them. “The dam is the principal structure of the beaver. It is also the most important of his erections as it is the most extensive, and because its production and preservation could only be accomplished by patient and long-continued labour. In point of time, also, it precedes the lodge, since the floor of the latter and the entrances to its chamber are constructed with reference to the level of the water in the pond. The object of the dam is the formation of an artificial pond, the principal use of which is the refuge it affords to them when assailed, and the water-connection it gives to their lodges and to their burrows in the banks. Hence, as the level of the pond must, in all cases, rise from one to two feet above these entrances for the protection of “Some of these dams are so extensive as to forbid the supposition that they were the exclusive work of a single pair, or of a single family of beavers; but it does not follow, as has very generally been supposed, that several families, or a colony, unite for the joint construction of a dam. After careful examination of some hundreds of these structures, and of the lodges and burrows attached to many of them, I am altogether satisfied that the larger dams were not the joint-product of the labour of large numbers of beavers working together, and brought thus to immediate completion; but, on the contrary, that they arose from small beginnings, and were built upon year after year, until they finally reached that size which exhausted the capabilities of the location; after which they were maintained for centuries, at the ascertained standard, by constant repairs. So far as my observations have enabled me to form an opinion, I think they were usually, if not invariably, commenced by a single pair, or a single family of beavers; and that when, in the course of time, by the gradual increase of the dam, the pond had become sufficiently enlarged to accommodate more families than one, other families took up their residence “The great age of the larger dams is shown by their size, by the large amount of solid materials they contain, and by the destruction of the primitive forest within the area of the ponds; and also by the extent of the beaver-meadows along the margins of the streams where dams are maintained, and by the hummocks formed upon them by and through the annual growth and decay of vegetation in separate hills. These meadows were undoubtedly covered with trees adapted to a wet soil when the dams were constructed. It must have required long periods of time to destroy every vestige of the ancient forest by the increased saturation of the earth, accompanied with occasional overflows from the streams. The evidence from these and other sources tends to show that these dams have existed in the same places for hundreds and thousands of years, and that they have been maintained by a system of continuous repairs. “At the place selected for the construction of a dam, the ground is usually firm and often stony, and when across the channel of a flowing stream, a hard rather than a soft bottom is preferred. Such places are necessarily unfavourable for the insertion of stakes in the ground, if such were, in fact, their practice in building dams. The theory upon which beaver-dams are constructed is perfectly simple, and involves no There are two different kinds of beaver-dams, although they are both constructed on the same principle. One, the stick-dam, consists of interlaced stick and pole work below, with an embankment of earth raised with the same material upon the upper or water face. This is usually found in brooks or large streams with ill-defined banks. The other, the solid-bank dam, is not so common nor so interesting, and is usually found on those parts of the same stream where the banks are well defined, the channel deep, and the current uniform. In this kind the earth and mud entirely buries the sticks and poles, giving the whole a solid appearance. In the first kind the surplus water percolates through the dam along its entire length, while in the second it is discharged through a single opening in the crest formed for that purpose. The materials being prepared in the manner I have previously described, the animals make ready to The embankment being completed, the animals construct their lodges. Fragments of wood, deprived of the bark, are arranged and united by clay or mud which the Beavers take from the riverside, transport, mix, and work with their fore-paws. During a single night they can collect as much mud at their houses as amounts to some thousands of their small handfuls. They thus plaster their houses with mud every autumn; in the winter this freezes as hard as a stone and protects them from enemies. These cabins form domes from three to four metres in diameter at the base, and from two to two and a half metres in height. The floor is on a level with the surface of Within, near the entry, the beavers form, with the aid of a partition, a special compartment to serve as a storehouse, and they there pile up enormous heaps of nenuphar roots as provisions for the days when ice and snow will prevent them from barking the young trunks. A dwelling of this kind may last for three or four years, and the animal here tranquilly enjoys the fruits of its industry, as long as man fails to discover the retreat; for the beaver can escape by swimming from all carnivorous animals excepting, perhaps, the Otter. During floods the level of the water nearly reaches the hut; if the inundation is prolonged and the animal runs the risk of being asphyxiated beneath his dome, it breaks through the upper part with its teeth and escapes. When the water returns to its bed the beaver comes back, makes the necessary repairs, and resumes the usual peaceful course of its life.109 We have thus seen, from a shapeless hole to these complex dwellings, every possible stage; we have found among animals the rudiments of the different human habitations, certain animals, indeed, having arrived at a degree of civilisation which Man himself in some countries has not yet surpassed, or even indeed yet attained. |