VI QUALIFYING FOR PROMOTION

Previous

Immediately upon graduating—indeed, often several months before graduating—the engineering student finds his first job awaiting him. Frequently he finds a number of first jobs awaiting him and must make a selection. For it is the custom with large manufacturing concerns to send out scouts in the early spring of each year to address the engineering student bodies, with the idea in mind of securing the services of as many graduates as the scouts can win over for their respective organizations through direct appeal. What is usually offered the coming graduate is a brief apprenticeship in the shop, at a living wage, with promise of as early and rapid promotion in the organization as the work of the apprentice himself will permit, or improves.

These offers are generally splendid opportunities. The graduate may learn much of a practical commercial nature which perforce has been denied him in his student days, and also, having entered upon this apprenticeship, he not only gets acquainted with production on a large scale, but he is brought into touch with what constitutes most recent acceptable practice as well. This, provided he be a mechanical or an electrical engineer. Graduates in civil and mining engineering, while offered positions from executives in these particular branches also, have no such large opportunities offered them. The work itself does not permit it. Yet in any of the branches there is never a scarcity of jobs open to graduates upon their leaving college.

To qualify for promotion in any work, but more especially in the professions, one must know one's business. That is a trite statement, but it will bear repeating. The young graduate at first will not know his business. His mind will be a chaos of theories based upon myriads of formulÆ which cannot but confuse him in the early days, when he is most earnestly trying to apply one or more of them to the more or less petty tasks which will be assigned to him. All he can do under the circumstances—all anybody could do under the circumstances—is to wait patiently, the while doing the best he can. Problems have a way of working themselves out—the correct formula will present itself; its true application will become manifest—and thus the young engineer has learned something of a practical nature which need not forsake him throughout the remainder of his engineering career.

Engineers are especially tolerant of one another's mistakes and errors. They are much more so than medical men, for instance. In the field of medicine one must show by many practical cases wherein a certain treatment has proved effective before the fraternity at large will even give the practitioner a hearing. This is not so among engineers. Engineers turn to one another in difficulties with earnest desire to help if they can help; and when one of their number is in trouble in his efforts to solve a difficult problem the whole body will turn to him with friendly encouragement and advice, if the latter is wanted. The young graduate who is struggling with a problem come up in his daily work, if he will but make the fact known to the engineers on the job in association with him, will find himself surrounded by engineers every one of whom will be seriously concerned for him and anxious to render assistance.

So the young graduate need entertain no fears on the ground of possible errors when starting out. Merely he must go slow; take his own good time on a job; ask all the questions possible of his engineer neighbors. Frankness in engineering, as in any other walk of life, pays. The bluffer is not wanted. No man knows it all, and certainly no engineer knows all there is to know about his profession. Time was when this might have been true; but it isn't true to-day. The work of engineering research and development has become so complex that engineers are forced to specialize. The engineering graduate, entering upon his first job, will discover early that he, too, must specialize. This will not be difficult, owing to the fact that his engineering education has been general and designed to embrace in a liberal way all practice. Drawing, as he will, from this liberal source that which he finds necessary in the solving of his initial problems, he will find himself within a short time becoming, willy-nilly, a specialist.

In the earlier years there should be considerable study done after hours on the part of the graduate engineer. Because his education has been general in the field, and he now holds a position with a company manufacturing steam-turbines, say, he must "wise up," as the saying goes, on the subject of steam-turbines. It will do him no harm to trace back to its source all progress made in the field of turbine engineering and construction. He will find no scarcity of books on the subject, and with every hour spent with these volumes he will become more valuable to the organization employing him. Likewise, if he find himself working for an electrical manufacturing concern, and himself a graduate in electrical engineering, if the product be only a single line, and so small a thing as spark-plugs, it will profit him greatly to read whatever has been printed on the subject of spark-plugs. So with the mining graduate in the matter of the different processes of recovering minerals; so with the civil graduate, especially in the concrete field of construction, which has made rapid strides in the past few years—the graduate should absorb as much as he can of the available works printed on the subject. Indeed, this is the profession of it, in that the practitioner must ever be alive and alert to what is being done and has been done from the beginning in his chosen line of endeavor.

Next must come fealty. The graduate on his first job must believe—and if he does not believe ought to change connections—that the product of his company is the best in the market. This need not necessarily be true; but he must feel that it is true. For only in this way can he put the best that is in him into his work. Industry—and the engineer is the backbone of industry—is a hotbed of competition. Any organization needs all the enthusiasm it can get. Greatest enthusiasm of all must come from within its own circles. Lacking this enthusiasm within its own family, the organization as a whole suffers. The graduate must first of all supply enthusiasm to the source of his employment, because at first he can supply but very little else. He must be true to his trust in ways other than the mere doing of what he is told or producing what he is expected to produce. This attitude cannot but help him qualify for promotion, and rapidly. It is a very important factor in any engineer's advancement.

Then there is the matter of patience. The writer knows of no other qualification more fruitful of reward than patience. The word control is frequently used in this regard—self-control. Its other name, however, is patience—the thing that gives a man to try and try again until he succeeds. Engineering is a difficult profession, though not more difficult than other professions, and in the average engineer's working-day many things occur which, if he be not possessed of infinite patience, will serve to try him to a considerable degree. Patience with those below him—patience with those above him—patience with himself—these are all necessary and will prove helpful to him in reaching the top. He must accept the petty tasks with a cheerfulness no less apparent than he accepts the more important ones. He must present his own ideas to his superiors with a degree of caution which, where the ideas are rejected, will yet permit him to withdraw within himself without giving the impression of being peeved. For engineering is above all other things the interchange of ideas among men having an equal training but a vastly different quality of experience. Men of diverse experience thus drawn together make for a balanced engineering staff, and a balanced engineering staff makes for a well-organized whole. The young engineer must conduct himself in such a way that his superiors will like him for what he is, as indicated by his personality, rather than for what he knows or does in his daily work.

To sum up, then, the young engineer, having entered upon his first job, must do three or four things in order quickly to qualify for promotion. He first of all must spend time in study after his day's work is done—absorb all information having to do with the company's own product; hold himself ever alert to the company's own methods of production; watch for an opportunity whereby this production may be improved upon or the methods of production themselves improved upon. The young engineer must proceed slowly in everything he undertakes; when brought to a halt through difficulties he should instantly appeal to one or another of his associates or superiors; he must be absolutely frank in all his dealings with these associates and superiors. In this regard, also, it might be said that the young graduate, following a habit become almost second nature with him in his school-days, must keep a note-book covering his activities throughout each working-day, a book wherein he will jot down everything of value to him which comes up in the day's work. Such books often form the basis of complete text-books in after years, and, indeed, are acknowledged to be the foundation of more than one recognized authority. Though in this regard, further, such a practice is sometimes discouraged in some organizations, since it is apparent that these note-books often contain facts which the organization does not wish to have made public, being, as these notes often are, in the nature of trade secrets. However, the student with a conscience will effectively guard the secrets of his employer as contained in his note-book, holding its contents for his own use in furthering the interests of the company which employs him.

And finally—in the matter of personality—patience and regard for the foibles of others will go far toward advancing the young engineer toward success. He must never forget in his earlier years that he is embryonic in the profession; that the profession is a difficult one and with many ramifications; that if he was able to live through three normal lives he would yet know only a very little of what there is to know about his chosen work. Thus he will conduct himself in a manner designed to win the interest and affection of men who are superior to him. Life to-day consists more than ever of service, and no man can go the path alone. Service—assistance one to another—makes up the sum total of life. No engineering graduate—no young man in any walk of life—can progress far without assistance, however brilliant as a student and capable as a man he may be. If he will but bear this last in mind—this and the other even more important truth, that as a man gives so shall he receive—that a dollar spent in charity means two dollars in the bank—I mean that exactly—then the heights themselves will beckon to him at an early age.

"Early to bed and early to rise"; "take care of the pennies and the dollars will take care of themselves"; "a bird in the hand is worth two in the bush"—we don't need—the engineering graduate does not need—that form of admonition. It means nothing and is false. What alone counts for success is a considerable regard for the rights and privileges of others, the unfortunate as well as the fortunate. Greed never brought success that was lasting to any one, and certainly it breeds unhappiness. Engineering is a work of service—service to others—and to the graduate who "gets" this truism will come all things of this life, not the least of which will be material rewards.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page