The writer can best illustrate the opportunities for young men which exist in engineering by a little story. The story is true in every particular. Nor is the case itself exceptional. Men occupying high places everywhere in engineering, did they but tell their story, would repeat in substance what is set forth below. More than any other profession to-day, engineering holds out opportunities for young men possessing the requisite "will to success" and the physical stamina necessary to carry them forward to the goal. Opportunities in any walk of life are not all dead—not all in the past. A young man to-day can go as far as he wills. He can go farther on less capital invested in engineering than in any other profession—that's all.
The young man's name was Smith. He was one of seven children—not the seventh son, either—in a poor family. At the age of sixteen he went to work in overalls on a section of railroad as a helper—outdoor, rough work. At seventeen he was transferred to the roundhouse; at nineteen he apprenticed himself to the machinist trade. Engineering? He did not know what it was, really. Merely he saw his way clear to earning a livelihood and went after it. He was miserably educated. His knowledge of mathematics embraced arithmetic up to fractions, at which point it faded off into blissful "nothingness"—as our New-Thoughtists say. But he had an inquiring mind and a proper will to succeed. While serving his three years in the shop he bought a course in a correspondence school and studied nights, taking up, among other things, the subject of mechanical drafting. When twenty-two years of age he applied for, and got, a position as draftsman in a small company developing a motorcycle. He was well on his way upward.
He spent a year with this company. He learned much of value to him not only about mathematics, but about engineering as a whole as well. One day he decided that the field was restricted—at least, too much so for him—and he left and went with a Westinghouse organization in Pittsburgh. His salary was in the neighborhood of a hundred and ten dollars a month. He remained with the company two years as a designer, and then, having saved up sufficient funds to meet his needs, went to college, taking special work—physics and chemistry and mathematics. He remained in school two years. When he came out, instead of returning to the drafting-room and the theoretical end of the work, he donned overalls once more and went to work in the shop as an erecting man. Two years afterward he was chief operating engineer in a small cement-plant in the Southwest, his salary being three thousand dollars a year. A year of this and he returned East, at a salary of four thousand dollars a year, as operating engineer of a larger plant. Then came a better offer, with one of the largest, if not the very largest, steel-plants in the country, as superintendent of power, at a salary of five thousand dollars a year. When the war broke out, or rather when this country became involved in the war, my friend Smith, at a salary of ten thousand dollars a year, became associated with a staff of engineers brought together into a corporation manufacturing shells. And all before he was barely in his thirties!
A young man still, what lies ahead of him can readily be surmised. Smith will follow engineering on salary until he is probably forty, when he will enter upon a consulting practice, and at fifty retire with sufficient money to keep him in comfort the remainder of his days. Nor will he be an exception, as I have stated in the opening paragraph. The profession is crowded with men who have worked up from equally humble beginnings. Indeed, one of the foremost efficiency engineers in the country to-day began as an apprentice in a foundry, while another, fully as well known in efficiency work, began life in the United States navy as a machinist's mate. Automobile engineers, whose names, many of them, are household words, in particular have gone big in the profession and from very obscure beginnings. It is not stretching the obvious to say that the majority of these men, had they entered upon any other work, would never have been heard from nor have attained to their present wealth and affluence. Smith was just one of many in a profession offering liberal opportunities. The opportunities still exist and in just as large a proportion as they ever existed. It remains but for the young man to decide. The profession itself, almost, will take care of him afterward.
However, not all of our engineers have gone upward by the overalls route. Nor is it at all necessary to do this in order to attain to success. The high-school graduate, entering a college of engineering, has an equal chance. Some maintain that he has a better chance. Certain it is that he is better qualified to cope with the heavier theoretical problems which come up every day in the average engineer's work. There is a place for him, side by side with the practical man, and his knowledge will be everywhere respected and sought. But a combination of the theoretical and the practical, as has frequently been declared, makes for the complete engineer. Some get the practical side first and the theoretical side later; some get the theoretical side first and the practical side later. It matters little—save only that he who gets the practical side first is earning his way while getting it, while the man who goes to college is in the majority of cases being supported from outside sources while getting what he wants. But in the end it balances. Merely, the "full" engineer must have both. Having both, he has, literally, the world within his grasp. For engineering is—to repeat—the adapting of discoveries in science and art to the uses of mankind. And both art and science reflect and are drawn from Mother Nature.
There is still a great scarcity of engineers. All branches feel the need—civil, mechanical, mining, chemical, automotive, electrical—the call goes out. It is a call just now, owing to the vast reconstruction period confronting the world, lifted in strident voice. Engineers everywhere are needed, which in part accounts for the liberal salaries offered for experienced men. The demand greatly exceeds the supply, and gives promise of exceeding it for a number of years to come. All manufacturing-plants, all mining enterprises, of which of both there are thousands upon thousands, utilize each from one to many hundreds of engineers. Some plants make use of three or four different kinds—mechanical, civil, electrical, industrial—some only one. But not a plant of any size but that has need for at least one engineer, and engineers are scarce. Therefore opportunities are ample.
To the young man seeking a profession, provided he be of a certain type—possessed of certain inherent qualities, the nature of which I shall set forth in the following chapter—engineering offers satisfactory money returns and—more satisfactory still—a satisfactory life. The work is creative from beginning to end; it has to do frequently with movement—always a source of delight to mankind; a source having its beginnings in earliest infancy, and it is essentially a work of service. To build a bridge, to design an automatic machine, to locate and bring to the surface earth's wealth in minerals—surely this is service of a most gratifying kind.
And it pays. The arts rarely pay; science always pays. And engineering being a science, a science in the pursuit of which also man is offered opportunities for the exercise of his creative instincts, like art, is therefore doubly gratifying as a life's work. I know—and it will bear repeating—no other profession that holds so much of bigness and of fullness of life generally. Engineers themselves reflect it. Usually robust, always active, generally optimistic, engineers as a group swing through life—and have swung through life from the beginnings of the profession—without thought of publicity, for instance, or need or desire for it. Their work alone engrossed their minds. It was enough—it is enough—and more. And that which is sufficient unto a man is Nirvana unto him—if he but knew it. Engineers seem to know it.