THE VENOMS AND THEIR REMEDIES. ON a subject which has baffled research in all ages, viz. the endeavour to discover an antidote for snake venom, it scarcely becomes me to speak. Yet, as in the foregoing chapters, I may at least venture to lay before my readers some general account of the various remedies used in snake regions, and, for the benefit of residents in those countries, describe the most approved means of treating the bites of venomous serpents. Information of this kind will not, I trust, be wholly useless. First, it may be as well to impressively repeat what has been already constantly affirmed by all our scientific experimentalists on snake venoms, that ‘as yet no antidote to them has been found.’ Remedies there are in abundance; and it is just as great an error to believe that all snake venom is incurable—i.e. that a bitten person must necessarily die—as that there are countless ‘antidotes,’ as persons broadly and loosely call the various means of cure. At the time when Professor Halford’s treatment by subcutaneous injections of ammonia were so popularly discussed, you might read week after week of ‘Halford’s Notwithstanding these confident assertions, we are continually reading of ‘an infallible cure for snake-bite, never known to fail;’ ‘another antidote to snake-bite;’ or that ‘at length an antidote has been discovered,’ which on investigation may be something tried long ago, and occasionally with success, or it may be a plant or a chemical preparation which under certain circumstances effects a cure, but none of which will stand the above definition of antidote. Each new attempt is announced as ‘an antidote’ nevertheless. Dr. Arthur Stradling was More recently still permanganate of potash has been announced as an antidote; and no doubt in some cases it has proved a successful remedy, as occasionally, but not invariably, other treatments have been. There still, however, appears to be the same lack of substantial evidence with regard to its being an ‘infallible antidote’ in the chemical acceptation of the term; and indeed as venoms themselves vary, a remedy that might prove effectual in one case might fail in another. Dr. Stradling, than whom perhaps few are more competent to offer opinions on the subject (he having for five or six years subjected himself to experiments and carefully noted the effects on his own person, as others have noted the effects on animals and birds bitten), says that you might as well hunt through the pharmacopeia for a drug that will be a specific in every kind of fever, or ‘to look for a general antidote to opium, strychnine, bella donna, arsenic, and mercury poisoning,’ as to expect to find one antidote for every kind of snake venom. ‘When we know how many different venoms there are, we may look for an antidote to each,’ he has explained. Years ago the venoms were classed under the heads of Viperine, Echidnine, Crotaline, etc.; but Dr. Stradling states that he has found very different venoms in Crotalus horridus and Crotalus durissus, and that he prepared himself differently for each species of snake with which he experimented, It is often asked, ‘Which is the most poisonous snake?’—a question as difficult to answer as, ‘Which is the most poisonous plant?’ Dr. GÜnther’s opinion is that the degree of danger depends less on the species which inflicts the wound, than on the bulk of the snake, the quantity of its venom, the season or temperature, and the place of the wound. Quantity for quantity, the virus of one snake is more active or more powerful than another, and different in its effects; but then the lesser discharge of poison directly into a vein might be more serious than a full discharge in a part where absorption is slow. Also exactly the same quantity, minim for minim, would more seriously affect a warm than a cold blooded animal, more seriously affect a feeble and timid person or animal than the brave and vigorous. Yet, as there is a notable gradation in the development of the poison apparatus, the perfection of which culminates in the viper, it seems not unreasonable to decide that as a rule a viper is more virulent than an elaps of the same size—let us say bulk, because the viperine snakes are short and thick and the elapidÆ long and slight. Each snake is supplied with venom adequate to its own requirements, that is, enough to kill the With regard to the many drugs used in various countries for the cure of snake-bite, it is curious to note that, as a rule, they are procured from the most deadly plants. As ‘like cures like,’ so poison cures poison. Most of them are powerful stimulants, in which lies their chief virtue. Among them are aristolochia, opium, ipecacuanha, senega-root, guaco or huaco, asclepias, liatris, euphorbia, polygala, ophiorrhiza, etc. Some of the poisonous antidotal plants in South America are used in the preparation of the celebrated wourali or curare, with which the Indians poison their arrows. Snake-venom and pounded fangs are also constituents of this, which is why the effect in the blood—as has been shown in experiments—is similar to that of snake-bite. Some of the tribes are said to acquire immunity from the most virulent snakes by swallowing the potent herbs of their region. Inoculation with deadly vegetable juices is another of their remedies; and Tschudi informs us that after this inoculation, snake-bites are harmless for some time, but that the There are many popular vegetable ‘antidotes’ of the log cabin and the rough border-clearings of America, but the ‘faculty’ form no high estimate of them. Dr. Weir Mitchel tested some twenty or thirty plants which owe their reputation to Indian traditions, but without success. ‘In the hands of science they failed.’ But then is there not always some delay before the patient can reach the hands of science? It is the prompt treatment, and having the remedies always ready,
Whereas in India, including Ceylon, the venomous families are five to the thirty-five innocuous ones. In India alone GÜnther describes twenty families of snakes, out of which four only are venomous. When, therefore, we read the annual statistics of India, and the enormous death-rate, which suggest resolutions towards the extermination of snakes, we may again hint that education must join hands with science in order to find remedies. Europeans are seldom bitten; you might count the numbers on your fingers in as many years. Dr. Edward Nicholson has shown that while in twelve But to return to remedies, one would suppose that drugs or plants which kill venomous snakes would be also cures for their bites. It is an old belief that vipers contain in themselves an ‘antidote’ to their venom, and hence the number of popular medicines prepared from their bodies. Conversely, some of the deadly poisons of the pharmacopeia are death to snakes. Aristolochia produces powerful effects on the African vipers; the white ash (Fraxinius Americanus) is an equally rapid poison to the rattlesnake, as Prof. Silliman proved. It is said that these reptiles are never found in the vicinity of this tree. It was the white ash which Oliver Wendell Holmes introduced into his story of ‘Elsie Venner,’ as being destructive to crotalus life, and the novelist wrote from his experience of its effects. Similar cases have been recorded in the Philosophical Transactions. Pennyroyal, says Charas, was held to the nose of a viper, ‘who by turning and wriggling laboured hard to avoid it; and in half an hour’s Another drug which is poison to a venomous snake is tobacco, within the reach of most persons. This, among native remedies, has always been in favour, and we have heard of its efficacy ever since ‘the weed’ was known to Europeans. Various species of tobacco and its allies are indigenous to most tropical countries, and probably were in use for both man and snake-bites long before civilised nations took such comfort in smoking. In classic ages it was believed that human saliva was fatal to vipers, and it is even affirmed that the Hottentots often kill a puff adder by merely spitting upon it. One must infer from this that their saliva is saturated with some drug which they chew; and from classic authors we might discover that the practice of chewing tobacco, opium, or other drugs obnoxious to snakes, was in use from very early ages. Those classic authors who tell us that human saliva is fatal to snakes had not studied snake nature enough to assign a reason for this, though in all probability a reason did exist. ‘Man carries more poison in his mouth than a snake,’ said an old Virginian writer, alluding to nicotine. ‘He can poison a rattlesnake more quickly than it can him.’ Nicholson states that it also rapidly affects a cobra, and he recommends it, should you wish to destroy the snake uninjured: ‘You have,’ he says, ‘but to blow into its mouth a drop or two of the oil from a dirty tobacco-pipe.’ Two young men chopping wood together in Virginia espied a rattlesnake. With a forked stick one of them held Strychnine appears to have a similar effect to tobacco on snakes. Fayrer found cobras extremely susceptible to the influence of strychnine. An almost impalpable quantity caused a cobra to ‘twist itself up in a rigid series of coils and die.’ A good many experiments have been tried by a subcutaneous injection of strychnine into dogs and other animals, immediately after being bitten, but without sufficient success to warrant the adoption of it as an infallible remedy. In some of the cases, indeed, the deaths from tetanus suggest the question, ‘Did the cats and dogs die from venom, or from strychnine?’ As virulent poisons are administered in virulent cases, how would it be to swallow strychnine in chemically-prepared doses? Carbolic acid is another drug which produces powerful Dr. Weir Mitchel approves of carbolic acid so far as to recommend every backwoodsman to supply himself with a little of it, which is easily portable and manageable in capillary tubes. In several of his experiments with crotalus venom, carbolic acid applied to the wound was attended with success. But it must be done at once. The whole secret of cures—when cures can be effected at all—lies in promptness. It is celerity on the part of the Indians which ensures their success. In an instant, if his comrade be bitten, the savage is on his knees, sucking the wound, grasping the limb firmly, or strapping it tightly above and below the bite, knowing quite well the importance of checking the circulation. He has his ‘poison pills,’ and tobacco in his pouch. He explodes gunpowder on the wound and loses not an instant. Nor does the victim lose heart. He submits with courage and confidence, and in these lie another element of success. Many cases are on record of persons being at death’s door through fear alone, when bitten by a harmless snake, but recovering on being assured that there was no danger. And other cases are well known where bitten persons have died of fright and the depressing influences surrounding the accident, when they might possibly have recovered. And assuredly the remedies are generally so severe as to be in themselves sufficiently terrifying. ‘No time for reflection;’ ‘no mercy must be shown,’ declares Sir Joseph Fayrer, in describing the incredible rapidity with which the venom inoculates the blood ‘in a moment of time.’ Where a deep wound has been inflicted by a highly venomous snake on a small animal, death has been known to occur in a few seconds, especially if the bite were on a large vein or an artery. Therefore if the bite be on a limb, to tie a ligature is the first thing to be done. A thong of leather, a tape, a string, a cord, a garment torn in shreds, anything that can be caught up, must at once be tied round the limb. Every instant of delay increases the danger. Incredible force must be used to tighten the ligature, which even with a tourniquet or a stick to twist the cord to the utmost is scarcely sufficient to completely stop the circulation in the fleshy part of a limb. So tight as to cut into the flesh is frequently necessary. In the case of a dog whose hind leg had been bitten, such amazing force was required, in one of Fayrer’s experiments, that with the strength of a pair of hands it was almost impossible to tighten the ligature sufficiently to effect complete strangulation. In another of his experiments a chicken had a ligature tightened round its thigh ‘with the greatest amount of tension that a man’s hand could exert.’ The poor chicken (already half dead with terror and pain, as one must conjecture) was then bitten below the ligature by a cobra, but in spite of the thorough strangulation of the limb, the fowl showed signs of poison in twenty-three minutes, and in three-quarters of an hour was dead. These two among other cases are cited to show that the mere Nor, when we look at the effects of a bite, can we wonder at the severity of the remedies. ‘Vomiting black fluid,’ ‘bleeding at every orifice of the body,’ are among the horrible sufferings at the time; an injured constitution and hideous sores likely to break out afresh periodically in various parts, may be some of the after consequences should the patient recover. As the effect of the bite is depressing, the system must be kept up with strong stimulants. Food is of little use, because the functions are too feeble to digest it. But great faith is placed in stimulants. Hence the popularity of ammonia, Any technical explanation must not be attempted by me; but those who are interested in this subject will find Prof. Halford’s own accounts in the Medical Times for 1873 and In India similar kinds of experiments were not attended with success; leading to the conclusion that the Indian snakes were more deadly than those in Australia. Climate, latitude, season, and many other circumstances affect the virulence of snakes, as we may here repeat. The ‘Brown’ or ‘Tiger snake’ (Hoplocephalus curtus), the ‘Black snake’ (Pseudechis porphyriacus), Hoplocephalus superbus, and some other of the larger venomous kinds within the tropics are thought to be equal in virulence to the Indian ones of the same bulk in the same season. Many of them erect themselves and distend their necks like the najas. And now for a few words about the most popular and perhaps most attainable of all remedies—alcohol! No wonder the backwoodsman resorts to this, which without any chopping off of fingers or toes, or personal pyrotechnics, or other local tortures, deadens his sensibilities, renders him unconscious of suffering, and sends him into a happy obliviousness of danger. It is not a refined mode of treatment, nor one that presents many opportunities of exhibiting professional skill; and it is no doubt somewhat derogatory to admit that to become dead drunk is an effective victory against snake venom! Other old and inelegant remedies we hear of as practised by the Bushmen of South Africa, and savage tribes elsewhere, but revolting in the hands of refined practitioners. Deference to science and loyalty to the profession demand some more elaborate means. Yet the efficacy of whisky or brandy is admitted by all, and the pioneer who has not a doctor within miles of him has his demijohn of whisky at hand. During a sojourn in Iowa some years ago, when wild and uncleared lands formed the ‘streets’ of the town in which I was staying—Lyons on the Mississippi river, and as lovely a spot as artists and botanists can wish to revel in—it was by no means an infrequent occurrence to hear of rattlesnake bites. ‘What was done to the man?’ ‘Is he alive?’ were questions naturally asked. ‘He drank a quart of raw whisky, and got dead drunk.’ Generally a quart had the desired effect—that is, of causing intoxication. Persons unused to intoxicants might be affected by a less quantity, but so violent is the combat between venom and whisky that a large dose must be swallowed before any effects at all are produced. In the southern and hotter States it was similarly used. Indeed, a planter himself told me that Sambo would sometimes prick his hand or foot with a thorn, and crying out ‘Rattlesnake!’ fall into well-assumed agonies, in his preference for a spirituous somniferousness to cotton-picking. But when the fraud was detected and less enticing remedies were adopted, rattlesnake or copper-head bites became less frequent. I heard of a man in Nevada, George Terhune, a teamster (I give his name, having every reason to believe the truth of the story), who was bitten in the hand by a rattlesnake while stooping to reach some water out of a spring. The man was alone and far away from human habitations. It was an instinctive and momentary business to first kill the snake then rushing to his waggon, he drew the bung from a keg of whisky and took a large draught of the contents. After swallowing as much as he could, he took some tobacco from his pocket, saturated that with whisky, and applied this poultice to his Professor Halford describes a case of snake-bite near Melbourne, in which two bottles of brandy were drunk without any symptoms of intoxication; and another of a girl of fourteen, who, when bitten by an Australian snake, drank three bottles without being intoxicated! She recovered. ‘Alcohol has powerful attractions for oxygen,’ writes Professor Halford, on the theory that the venom has produced foreign cells in the blood, ‘so that if alcohol engage the oxygen absorbed by the poison, the cells perish and recovery ensues.’ Others among the ablest experimentalists similarly recognise the efficacy of alcohol. Dr. Shortt of Madras says: ‘Bring the patient under the influence of intoxication as speedily as possible. Make him drunk, and keep him drunk, until the virus is overcome.’ Dr. Weir Mitchel found that delicate women and young children under the influence of snake poison could take ‘quarts of brandy without injury, and almost without effect.’ One man brought to him—a man of temperate habits—took one quart of brandy and half a pint of whisky, which ‘only slightly intoxicated him for about four hours.’ Another man bitten in the throat was cured at the end of twenty-four In South Africa, too, the alcoholic remedies seem to be successfully adopted, so far as we may judge by occasional reports of them which find their way into print. In the Field of January 14th, 1882, a Mr. Walter Nightingale records that a boy of fifteen, bitten by a puff adder, drank two bottles of brandy before it had any effect; and a little girl two years old, bitten in the hand by a ‘horned viper’ (which might have been a Lophophrys or Vipera nasicornis), had administered to her brandy and milk in occasional doses without any visible effects, until a whole bottle of brandy had been thus swallowed! The child recovered; and the force of the argument seemed to rest on the astounding quantity of strong spirit that could be taken to overcome the venom without producing intoxication. Under ordinary circumstances, a wine-glassful of brandy would have made either of those children tipsy, yet the infant of two years did not reel under a whole bottleful, and the boy of fifteen under two bottles full—a quantity that would have killed many outright. Yet whisky is not an ‘antidote’ chemically, any more than is ammonia, or tobacco, or artificial respiration, which latter has been tried with success by Drs. Vincent Richards and Lauder Bruton. So rapidly destructive to every vital function is snake venom, that anything that will keep life going until the poison is eliminated is desirable; and what would themselves be poisons in other cases here act only as It is not within the compass of this work to attempt to describe in detail the many remedies which from time to time have enjoyed a short-lived popularity; such as ‘snake stones,’ the ‘Tangore pill,’ and other preparations. Conventions have within the last twenty years been held in India, in Australia, in America, and London; and Commissioners from among our most distinguished M.D.’s have been appointed to investigate all the reputed ‘antidotes’ and popular remedies that could be got together. The names of Dr. Ewart, Dr. Lauder Bruton, and Dr. Vincent Richards of the Indian Medical Department, as associated with artificial respiration, must be familiar to many. Dr. Shortt, of Madras, claims originality in the use of potash, liq. potassÆ, which both by the mouth and by injection has been attended with success. He has recorded several cures by liq. pot., ‘not as miraculous, but as rational.’ He affirms that it has the property of neutralizing the venom, and that brandy expedites it by carrying it rapidly From all the ‘recoveries’ above quoted, it may be said that the bites could not have been very deep, or that the snakes could not have been very virulent; and in the many hundreds of experiments tried in India and elsewhere, the doctors have arrived at similar conclusions. A full charge of venom injected directly into the veins, should no remedy be attempted, is almost certain to be fatal. Within half an hour a man might die from a vigorous crotalus, fer de lance, or large elaps. It is important to impress this on the reader, lest from the cures above cited, I appear to argue that snake-bite is not so serious an affair after all. Notwithstanding that the South American Indians, in the midst of the most deadly of the CrotalidÆ, do fly confidently to their guaco and their traditional remedies, they know so well when there is no chance of recovery that they attempt no cures whatever. Travellers tell us they lay themselves down to die when bitten by certain snakes; probably they know that, from the position of the bite, or The venom appears to be an indestructible fluid. Toxically it remains unaltered whether boiled or frozen, or mixed with the strongest corrosives. Diluted in water, alcohol, or blood, it is still equally injurious. The blood of an animal killed by a bite, if injected into the veins of another animal, kills that one also; and the blood of the second one killed is similarly fatal to a third, and the third to the fourth, and so on through a series of animals. Also so small a quantity is fatal where no remedies are attempted, that a venomous serpent can kill six or eight animals one after another; each one, bitten in succession, succumbing more slowly, it is true, but still dying at last. Fayrer found that no less than nine creatures could thus be affected by one cobra. A dog, a pigeon, and seven fowls were bitten one after the other: the dog, first bitten and receiving the largest injection of venom, died in thirty-three minutes; a fowl, next bitten, in three minutes; the third, in ten minutes; the fourth bitten, in eleven; the fifth, in seventeen minutes; but the ninth bitten, a fowl, when the poison gland was exhausted, recovered after a time. And the same effect is seen in much larger animals than fowls. Fayrer also tells of four men bitten in succession by one cobra, only the last one bitten receiving treatment, and recovering-slowly after many days. The facts prove Though the venom may be swallowed with impunity by a thoroughly healthy person, there is always danger of its being absorbed through the delicate membranes of the throat and stomach. In cases of sore throat, injured gums or lips, or internal maladies, the risk would be great, of course. Animals killed by the venom are constantly eaten, Fayrer states; and that the hungry natives eagerly carried off the fowls upon which he had experimented. Since those celebrated experiments at Florence by the ‘Florentine Philosopher,’ Redi, and those other ‘Knowing Physicians’ above two hundred years ago, the venom has been swallowed by many. The great point of discussion then was to ascertain the source of the ‘Mischiefs;’ whether they arose in the gall Lately we have been led to think that it is something more than harmless. Through the researches of Professors Selmi, Lacerda, Gautier, and others, we learn that from the powerful peptic properties of the venom it may become a valuable medicine. I think I am correct in stating that a Dr. C. Hering of Philadelphia, when practising in British Guiana some forty years ago, introduced the venom of our celebrated Curucucu (Lachesis mutus) into medicine; and that since then, serpent venoms have held an important place in the Homoeopathic Pharmacopeia. Already we have hinted at the digestive properties of venom to the serpents themselves, Drs. Lacerda and Netto of Brazil have proved that crotaline venom acts as a solvent on hard-boiled egg and other albuminous substances,—that it can, as it were, digest living tissues; and Dr. Stradling thinks that this solvent or disintegrating power will in some measure account for the intense local severity of a venomous snake-bite, ‘so disproportionately wide-spread to the tiny punctures made by the needle-like tooth.’ The excision of the fang does not check the function of the poison gland any more than the extraction of a tooth will check the salivary secretions in a human mouth, because (as was described in the chapter on ‘Dentition’) there are other fangs coming forward and requiring similar supplies. One great value in experimental snake-bites by subcutaneous injection is knowing which specific venom, or Human beings may take courage in reflecting that in some of the experiments under which animals have died, in spite of immediate remedies, a far larger dose of venom has been injected than could possibly pass through the fang in one normal bite. The virulence of the venom in ever so minute a quantity has been proved sadly enough; yet the possibility and hope of recovery are also evident. ‘As prevention is better than cure,’ those who run risk in the tropics can guard against bites by wearing thick coverings to their feet and ankles in the way of gaiters, leather boots; and denser materials for clothing, in preference to those which the finely-pointed fangs can easily penetrate. The cloth or leather may then receive the principal charge of venom. Silk as a lining is good, and has the advantage of coolness. Anything rather than bare feet. Then supplies of ammonia, tobacco, carbolic acid, and strong tape are easily portable, and plenty of good whisky, if the bearer can courageously keep it for emergencies. The mongoose of classic reputation must have a passing mention; though it is now pretty well understood that this The question of immunity from bites suggests yet one other point on which some uncertainty exists, viz. Do snakes die of their own bites? Dr. E. Nicholson only shall be quoted here, because I shall be able to introduce some cases from personal observation in the ensuing chapter, concluding this with just one foreign example which may be relied upon. ‘According to my experience,’ says Nicholson, ‘the poison of venomous snakes affects not only harmless ones, but also venomous snakes of other genera.’ My own opinion is that they can kill not only other snakes, but even themselves if the charge of venom be strong enough. What has occasionally been seen in print of ‘snakes committing suicide,’ is, I think, only from an instinct in the serpent to strike at what injured it where injured. It feels a sudden pain and turns to avenge the injury, striking itself on the In vol. xxii. of Nature, p. 40, the case recorded by Mr. S. H. Wintle from Tasmania will, I think, bear this explanation. He pinned a ‘black snake’ (probably Pseudechis porphyriacus) to the ground with a forked stick by the middle of the body; instantly coiling round the stick, the angry snake turned and buried its fangs in itself, making the part wet with viscid slime. Hardly had it done this than the coils relaxed; a perceptible quiver ran through its body; in a few moments more it lay extended and motionless, open mouthed and gasping, and in three minutes was dead. Mr. Wintle examined the snake after death, and found the body ‘bloodless,’ as though the poison had destroyed the colouring matter. He tried the blood on a mouse, which died in five minutes; and on a lizard, which died in fourteen minutes. If the saliva of an angrily-excited human being or a dog be more injurious at one time than another, how much more so that of a venomous serpent. The flow would be greater, the character more noxious. It seems therefore a mere question of power or virulence, the greater over the less. In some cases one serpent might kill another, in other cases not. |