CHAPTER XII. FIRE-ESCAPES AND FIRE-FLOATS.

Previous

"Very smart indeed."

The speaker was watching a light van, which had just been whirled into a yard. Light ladders projected horizontally in front of the van, and large wheels hung behind, a few inches above-ground. The machine was glowing in brilliant red paint.

Off jump five men in shining brass helmets.

"Stand by to slip!" cries one of the men, who is known as No. 1.

Thereupon, another man casts off some fastenings at the head of the van, and controls the ladders until the large wheels touch the roadway; another man eases away certain tackle; and yet another, as by a magical touch, brings the ladder to an upright position directly the big red wheels come in contact with the ground, No. 2 man assisting him.

The whole operation is performed with great smartness, and the escape—for the machine is one of Commander Wells's new horsed escapes—is whipped off its van and reared against the house in the proverbial twinkling of an eye.

Such a scene may be witnessed any afternoon at the London Fire-Brigade Headquarters, when the horse-escape drill is being practised; and the superiority of the new machine over the old seems so obvious, that you exclaim: "I wonder it has not been done before!"

The men's positions are all assigned to them. The "crew," as it is called, consists of four firemen and a coachman. When hurrying to a fire, No. 1 takes his place on the near side in front, No. 2 is at the brake on the off side, No. 3 at the brake on the near side, while No. 4 takes his seat on the off side.

Arrived at the scene of the fire, each man springs to his appointed duty. When the escape is quite clear, No. 1 goes to the fire, No. 3 is seen busy with the gear, and the coachman is occupied with his horses. He removes them from the van if necessary, and is ready to ride with a message if required to do so.

Moreover, the van carries five hundred feet of hose, and all the necessary gear for using a hydrant at once; so that water can be thrown on a fire directly, even without the arrival of an engine.

Life-saving is, however, the special use of the escape itself; and looking at it superficially, you will say that the ladder of this machine is not nearly long enough to reach the upper windows of a high house.

But if you watch the men at work, you will see that the ladder can be cleverly and quickly extended to a much greater height.

You will observe that the escape is made on the telescopic principle, and on a sliding carriage; and though when not extended it only measures about 24 feet over all,—as when riding on the van,—yet when the extending gear is set to work, it can be made to reach a height of 50 feet, or more than double its usual length.

This gear for extending the ladder is fitted to the levers on each side, and is easily worked by two men. The 50-feet escapes are in three lengths, the middle ladder being worked by two separate wires, and the top ladder by one wire.

The van carrying the escape is specially built for the purpose; and, as we have seen, the machine can be instantaneously detached, the van being thus free for other uses if necessary.

Not long after his appointment as chief officer in November, 1896, Commander Wells submitted plans which he had designed for new escapes 40 and 50 feet in length, and ladders 70 feet in length. The 40-feet escape was in two lengths, and the others in three lengths; and all of them were designed to be carried on a van of new pattern.

The County Council authorized the chief officer to obtain patents for his invention, and also ordered experimental machines to be made. These proving satisfactory, it was determined to use them; and a considerable number were ordered, the horsed escape being introduced into the brigade in July, 1897. The appliance is lighter than those hitherto in use, and can be manipulated by fewer men with even greater ease.

It has no shoot, or trough, down which a rescued person can be slipped; and bearing in mind that this operation may prove hazardous, unless the person have sufficient presence of mind to raise and press his arms against either side of the shoot so as to break his fall, there is no reason to regret its absence.

Further, the machine will now be able to reach the scene of action so speedily, and is so amply manned, that the firemen should be able to effect a rescue without the need of a shoot. At the same time, it must be borne in mind that instruction for various patterns of fire-escapes is given at headquarters, and the shoot may be seen in use on some machines there.

The new horsed escape follows a series of life-saving appliances, extending over many years. Ladders of various kinds, of course, form an important feature; but the necessity of some arrangement whereby the height of the ladders could be rapidly and efficiently extended would, no doubt, stimulate invention; and various contrivances were devised for this purpose. Further, the need for conveying the machine rapidly to the fire would lead to the ladders being placed on wheels.

Without specifying the various kinds of portable ladders in use, it may be stated that the Metropolitan Brigade came to use one, consisting of a main ladder varying from 32 to 36 feet high, and furnished with a canvas trough along its length. It was doubtless a machine of this sort which was in use when Fireman Ford lost his life at the Gray's Inn Road fire in 1871. A second ladder, jointed to the first, extended the height 15 feet; while other ladders in some escapes raised the height to 60 and in some cases to 70 feet.

The escape in general use by the brigade in 1889 consisted of a main ladder, having the sides strengthened by patent wire-rope, and finished at the back with a shoot or a trough of uninflammable copper-wire netting. A fly-ladder lay along the main ladder, to which it was jointed, and was raised, when needed, by levers and ropes. A third ladder, known as the "first floor," which could be jointed to the fly-ladder, was placed under the main ladder; while a fourth could be added, bringing the height up to 60 feet. The fly-ladder could also be instantly detached for separate use if required.

The carriage on which this arrangement of ladders was mounted was comparatively light, and was fitted with springs and high wheels, and two men could move it anywhere.

As we have said, drill for various descriptions of escapes is practised at headquarters; but the general instructions are that, when running the machine, two men are to be "on the levers," to prevent accident.

There used to be a society to organize the use of fire-escapes. It was called the Royal Society for the Protection of Life from Fire, and was first established in 1836. About seven years later its object was more fully attained, when it was reorganized, and had six escape-stations in the metropolis. In 1866, it possessed no fewer than eighty-five stations, while many lives had been saved, and numerous fires had been attended.

But next year, a municipal fire-brigade having been established, the society handed over its works, and practically made a present of all its plant to the Metropolitan Board of Works, the Fire-Brigade Act having been passed in 1865. And so once more municipal organization took up and developed what voluntary effort had begun.

Various devices have also been employed to afford escape from the interior of the building. Perhaps the simplest, and yet one of the most effectual, consists of a rope ladder fastened permanently to the window-sill, and rolled up near it; or a single cord may be used, knotted at points about a foot apart all along its length. Like the rope ladder, the cord may be permanently fastened to the window-sill, and coiled up under the toilet-table, or in any place where it may be out of the way, and yet convenient to hand.

Persons may be lowered by this rope, by fastening them at the end—as, for instance, by tying it under their arms, or placing them in a sack and fastening the rope to it—and then allowing the rope to gradually slip through the hands of the person lowering them. Better still, the rope should be bent round the corner of the window-sill, or round the corner of a bed-post, when the friction on the hands will not be so great, and the gradual descent will be safe-guarded.

In descending alone, a person will find the knots of great assistance in preventing him from slipping down too fast; and he may increase the safety of his descent by placing his feet on the wall as he moves his grip, one hand after the other, on the rope; this arrangement prevents the friction on the hands, which hurried sliding might cause, with its attendant danger of falling.

Permanent fire-escapes are provided in large buildings by means of iron ladders or staircases at the back or sides of the structure, with balconies at each story; while poles having baskets attached, ropes with weights so that they may be thrown into windows, and various contrivances and combinations of ladders, baskets, nets and ropes, etc., have all been recommended or brought into use during a long course of years. They are designed to afford escape, either from within, or from without, the burning building; several, however, being for private installation.

STERN OF YARROW'S FIRE-LAUNCH

STERN OF YARROW'S FIRE-LAUNCH.

Returning, then, to the public improvements in fire extinction, a new and remarkable floating fire-engine was designed about the year 1898, by Messrs. Yarrow & Co. of Poplar, in conjunction with Commander Wells, chief of the London Brigade. It was intended for use in very shallow water.

The plan was cleverly based on the lines of the Heron type of shallow-draught gunboats constructed for use on tropical rivers. Six of these vessels were built by Messrs. Yarrow for the Admiralty, and two went to the Niger and four to China. The new fire-float design provided for twin-screw propellers fitted in raised pipes, or inverted tunnels, to ensure very light draught combined with high speed, and the consequent power of manoeuvring quickly quite near to the shore.

The difficulty of working fire-floats close to the shore in all states of the tide had long troubled the London Brigade, and rendered the best type of vessel for this purpose a matter of much concern. Originally, vessels of comparatively large size were used, containing machinery both for throwing water and for propelling the boat. These vessels, however, were costly to maintain, and could not be effectively used at all states of the tide. Captain Shaw, therefore, separated the fire-engine from the propelling power, using tug-boats which would float in a few feet of water to haul along fire-engine rafts, which could be used quite near to the scene of the fire.

The last of the large vessels disappeared from the brigade in 1890, and the river-service consisted of tugs and floats, the fire-engines or rafts being familiarly called by the latter name. This system, however, did not prove satisfactory; for, as the chief engineer pointed out, just before the appointment of Commander Wells, tugs being necessary to haul the floats, double the number of river-craft were employed, and there was a consequent increase in cost of maintenance. He suggested that both the propelling and the fire-engine machinery should be united on one vessel, but that it should be of light draught.

The new chief officer was consulted. Now, Commander Wells, who was then thirty-seven years of age, had enjoyed a long experience in the navy; and, moreover, had been used to torpedo-boats, which of course are comparatively light craft. Entering the Service in 1873, he was second in command of a torpedo-boat destroyer in the Egyptian campaign of 1882, and for three years was second in command of the Torpedo School at Devonport. At the time of his election to the chief officer's post of the London Fire-Brigade, he was senior officer of a torpedo-boat squadron. He had also been second in command of two battleships, and had partly organized the London Naval Exhibition of 1891. He was, therefore, likely to be thoroughly conversant with all the latest types of light-draught navy vessels.

He pointed out the great disparity existing between the brigade's tugs, which required nine feet of water, and the fire-engine floats, which needed only about two feet; and he prepared a rough plan of a craft on the model of shallow-draught gunboats. The chief engineer approving the plan, a design was prepared by Messrs. Yarrow & Co., in conjunction with Commander Wells.

This design, or one similar to it, is probably destined to revolutionize river fire-engine service. The class of material used would be the same as that employed for building light-draught vessels for her Majesty's Government; and the method of raising the steam would be, of course, by Yarrow's water tube-boilers, having straight tubes, and raising steam from cold water in fifteen minutes.

The design shows a vessel about 100 feet long by 18 feet beam, and the draught only about 1 foot 7 inches—i.e., five inches less than the previous floats, though containing its own propelling power. The engines, twin-screw and compound, would develop about 180 horse-power, and the speed range from nine to ten knots an hour, while no doubt much higher speed could be obtained if desired.

But the main feature is the ingenious use of the propellers. How can they work in such shallow water?

Briefly, the propellers operate in the two inverted tunnels, the upper parts of which are considerably above the water-line. When the propellers commence to work, the air is expelled from the tunnels, and is immediately replaced by water. Thus, a large propeller can be fully immersed, while the vessel itself is only floating in half or may be a third of the amount of water in which the propeller is actually working. The design thus combines maximum speed with minimum draught. Sooner or latter, it seems likely that some such system must be adopted for fire-floats used in protecting water-side premises; and so far the design promises to inaugurate a new era.

The boilers in the design also operate the fire-engine pumps, which would probably consist of four powerful duplex "Worthingtons," each throwing five hundred gallons a minute. They discharge into a pipe connected with a large air-vessel, whence a series of branches issue with valves connected with fire-hose.

But at the top of the large air-vessel stands a water-tower ladder, the two sides consisting of water-pipes. At the heads of the pipes are fitted two-inch nozzles, the direction of which can be varied by moving the water-ladders from the deck. Branch-pipes can also be led underneath the deck to either side of the vessel. Suitable accommodation is provided for the crew, and ample deck space is available for working the craft. She seems likely to give a good account of herself at any water-side fire to which she might be called.

Concurrently with this new design, arrangements were made to alter the London river-stations, and to some extent remodel the river organization. Previously, there had been five river-stations; but usually between fifteen and twenty minutes elapsed after a fire-alarm was received before a tug got under way with its raft or float. This delay was partly owing to the fact that the men lived at some distance, and also that a full head of steam was not kept on the tugs.

The chief officer advised that the staff and appliances of the A and B stations, and also of the C and D stations, should be amalgamated, and thus a crew could be always on board and ready to proceed to a fire at a moment's notice. There would be four river-stations—viz., at Battersea, Blackfriars, Rotherhithe, and Deptford—from any of which a crew with appliances could steam at once. The value of the new arrangement is obvious. Moreover, the staff of the Blackfriars post are lodged in the large new fire-engine station at Whitefriars, opened July 21st, 1897, and which is not far from the north of Blackfriars Bridge.

As, therefore, the nineteenth century closes, we see the London Brigade, which has formed the model of so many others in the kingdom, straining every nerve, not only to maintain its high reputation, but to develop and to improve its elaborate organization and its numerous appliances for coping with its terrible enemy.

But, in the meantime, invention has been busy in other directions. Fire is so terrible a calamity, and its risks so great, that ingenuity has been taxed to the utmost to master it in every way; and not only to extinguish it, but to prevent it from occurring at all. Of a fire, indeed, it may be said that prevention is better than cure.

What think you of muslin that will not flame, of ceilings that will pour forth water by themselves, of glass bottles that break and choke the fire? What think you of chemical fire-engines, some so small as to be easily carried on a man's back? or of curtains and screens and fabrics that stubbornly refuse to yield?

All kinds of contrivances, in short, have been cleverly designed. Let us now see some in operation. Have you ever seen a fire choked in a minute? and how is it done?


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page