CHAPTER IV. THE PEARL-BUTTON MAKER'S CONTRIVANCE. THE MODERN FIRE-ENGINE.

Previous

How to force a continuous stream of water on the fire!

That was the problem which puzzled an unknown inventor about the year 1675. He probably saw that hitherto the appliances for extinguishing conflagrations failed at this point, and we may suppose that he cudgelled his brains to hit upon the right remedy.

Then one day, no one seems to know when, he thought of inventing, or adapting, the compressed air-chamber to a sort of portable pump, and, behold!—

The Modern Fire-Engine was born!

The invention was introduced, probably, after the Great Fire, because authorities describe it as first mentioned in the French Journal des Savans in 1675, and Perrault states that an engine with an air-chamber was kept at Paris for the protection of the Royal Library in 1684. If, therefore, Hero knew of the air-chamber, as some assert, it does not appear to have been much used. But probably the great disaster in London stirred invention, and the addition of the air-chamber was the result. It may not, however, have been a distinct invention, for an air-chamber had been found of great value in various hydraulic machines.

What, then, is this invention, and what is its great value to a fire-engine?

Briefly, it enables a steady and continuous stream of water to be thrown on a fire. It is the vital principle of the modern fire-engine, and renders it distinctly different from all squirts, syringes, and portable pumps preceding it. Instead of an unequal and intermittent supply, sometimes, no doubt, falling far short of the fire, we have now a persistent stream, which can be continuously directed to any point, in reach, with precision and efficiency.

How, then, are these results obtained? How does the air-chamber work?

It depends on the elasticity and power of compressed air. The water, when drawn from the source of supply by two pistons, working alternately, is driven into a strong chamber filled with air. The air becomes compressed, and is driven to one part of the chamber; but when it is forced back to occupy about one-third of the whole space, the air is so compressed that, like the proverbial worm which will turn at last, it exerts a pressure on the water which had been driving it back. If the water had no means of escape, the chamber would soon burst; but the water finds its way through the delivery-hose. If the hose issue from the top of the chamber, it is fitted with a connecting pipe reaching nearly to the bottom to prevent any escape of air.

Now, as long as the pumps force the water into the air-chamber to the necessary level—that is, to about two-thirds of the space—the pressure is practically continuous, and thus a constant jet of water is maintained through the hose. The ordinary pressure of air is about 14·7 pounds per square inch; and when compressed to one-half its usual bulk, its elasticity or power of pressure is doubled, and of course is rendered greater if still further compressed.

This power, then, of the compressibility and elasticity of air is the secret of the fire-engine air-chamber; but though introduced about 1675, it was not until 1720 that such engines seem to have become more general. About that date, Leupold built engines in Germany with a strongly-soldered copper chest, and one piston and cylinder, the machine throwing a continuous and steady jet of water some twenty or thirty feet high.

In the meantime, what was being done in England?

Here again the story is obscure; but we imagine the course of events to have been something like this:

In the dismal days after the Great Fire, people began to cast about for means to prevent a recurrence of so widespread and terrible a calamity. Fire-insurance offices were organized, and they undertook the extinguishment of fires. It is not unreasonable to suppose that in some form—perhaps by offering prizes, perhaps by simply calling attention to the need for improvement, perhaps by disseminating information such as of the engine mentioned by Perrault at Paris—these offices stimulated invention; perhaps the memory of the Great Fire was enough to stir ingenious effort without their aid.

Now, there was a pearl-button maker named Newsham, at Cloth Fair, not far distant from Pye Corner, who obtained patents for improvements in fire-engines in 1721, and again in 1725; while the Daily Journal of April 7th, 1726, gives a report of one of his engines which discharged water as high as the grasshopper on the Royal Exchange. This apparently was not only due to the great compression of air in the air-chamber, but also to the peculiar shape he gave to the nozzle of the jet; and it is said he was able to throw water to a height of a hundred and thirty feet or more.

In France a man named Perier seems to have been busy with fire-engines, though how far he worked independently of others we cannot tell.

The hose and suction-pipe are said to have been invented by two men named Van der Hide, inspectors of fire-extinguishing machines at Amsterdam about 1670. The hose was of leather, and enabled the water to be discharged close to the fire. It is worthy of note that this invention also appears to have been after the Great Fire of London.

Remembering, therefore, that Newsham was probably indebted to others for the important air-chamber and flexible leathern hose—though how far he was indebted we cannot say—we must regard him as the Father of the Modern Fire-Engine in England. Especially so, as his improvements have been regarded as in advance of all others in their variety and value. It is also worthy of note that the first fire-engines in the United States were of his construction.

Little is known of Newsham's life. The reasons leading him, a maker of pearl buttons, to turn his attention to fire-engine improvement are not clear. At his death in 1743, the undertaking passed by bequest to his son. The son died about a year after his father, and the business then came into the hands of his wife and cousin George Ragg, also by bequest; and the name of the firm became Newsham & Ragg.

One of Newsham's engines may be seen in the South Kensington Museum to-day, having been presented to that institution by the corporation of Dartmouth. The pump-barrels will be found to measure 4½ inches in diameter, with a piston-stroke of 8½ inches. The original instructions are still attached, and are protected by a piece of horn.

The general construction of Newsham's engines appears to have been something like this:

The body, which was long and narrow, measured about 9 feet by 3 feet broad; this shape enabled it to be wheeled in narrow streets, and even through doorways. Along the lower part of the body, which was swung on wheels, ran a pipe of metal, which the water entered from a feed-pipe. The feed-pipe was intended to be connected with a source of supply; but if this failed, a cistern, attached to the body of the engine, could be filled by buckets, while a strainer was placed at the junction between the cistern and the interior pipe to prevent dirt or gravel from entering it.

EARLY MANUAL FIRE-ENGINE

EARLY MANUAL FIRE-ENGINE.

On the top of the body was built a superstructure, which looked like a high box—greater in height than in breadth, and larger at the top than at the bottom. This box contained the all-important air-chamber and the pumps. The water in the interior pipe was forced into the air-chamber by the two pumps, and then thrown on the fire through a pipe connected with a hose of leather projecting from the top of the air-chamber. This pipe descended within the chamber almost to the bottom, so that when water was pumped into the air-chamber it flowed round the bottom of the pipe, and prevented any ingress or egress of air. As the water rose, the air already in the chamber became compressed in the top part of the chamber, and in turn exerted its power on the water.

The pumps were worked by levers, one on each side of the engine, and alternately raised and lowered by the men operating the machine; while this manual-power was much increased by one or two men working treadles connected with the levers, and throwing the weight of the body on each treadle alternately.

The principle of the force-pump may be thus briefly explained:

When a tight-fitting piston working in a cylinder is drawn upward, the air in the cylinder is drawn up also, and a partial vacuum created; if the cylinder is connected with water not too far distant by a pipe, the water will then rush upward to fill the vacuum. Then, if the bottom of the cylinder be fitted with a valve opening upward only, it is closed when the piston is pushed down again; and the water would burst the cylinder, if enough power were applied to the piston, but escape is afforded along another pipe as an outlet, which in the case of the fire-engine opens into the air-chamber, and which is opened and closed by another valve. Thus is the water not only raised from the source of supply, but is forced along another channel.

And the modern fire-engine—which we date from Newsham's engines in England about 1726—is a combination of the principles of the force-pump and of the air-chamber, which acts by reason of the great elasticity of compressed air.

Other inventors made improvements as well as Newsham, namely, Dickenson, Bramah, Furst, Rowntree, and others, though the differences were chiefly in details. An engraving mentioned in an old work of reference sets forth that a London merchant named John Lofting was the patentee and inventor of the fire-engine. His invention must have been since the Great Fire, because the Monument is depicted in one corner of the engraving and the Royal Exchange in another. Rowntree made an engine for the Sun and some other fire-offices, which protected the feed-pipe more efficiently from mud and gravel; and Bramah devised a hemispherical perforated nozzle, which distributed water in all directions, so that the ceilings, sides, and floor of a room would become equally drenched.

Bramah also applied the rotary principle to the fire-engine. He studied the principles of hydraulics, and introduced many improvements into machinery for pumping, a rotary principle being one of them. He attained this object by changing the form of the cylinder and piston, the part acting directly on the water being shaped as a "slider," and working round a cavity in form of a cylinder, and maintained in its place by a groove. He applied the rotative principle to many objects, one being the fire-engine. His fire-engine was patented in 1793; but we cannot discover that it changed any vital principle of the machine, which, as we have seen, consists in essence of a movable force-pump, steadied and strengthened by a compressed air-chamber and a flexible delivery-hose.

Joseph Bramah, however, is doubtless best known to fame as the inventor of the hydraulic press, though he is also celebrated for the safety-lock which bears his name. He was a farmer's son, and was born at Stainborough in Yorkshire in 1748; but an accident rendering him lame, he was apprenticed to a carpenter. Engaging in business as a cabinet-maker in London, he was employed one day to fit up some sanitary appliances, and their imperfections led him to devise improvements. He took out his first patent in 1778 and this contrivance proved to be the first of a long series. His lock followed, and then, assisted in one detail by Henry Maudslay, he introduced his hydraulic press, a machine which he foresaw was capable of immense development.

Several of his improvements are concerned with water, such as contrivances connected with pumps and fire-engines, and with building boilers for steam-engines. It is also said he was one of the first proposers of the screw-propeller for steamships. Altogether, he was the author of eighteen patents; though it has been pointed out that he improved and applied the inventions of others, rather than originated the whole thing himself. While he contributed improvements to the fire-engine, the vital principle of the air-chamber and the flexible hose remained the same. Up to about the year 1832, the larger engines generally in use in London seem to have thrown some eighty-eight gallons a minute from fifty to seventy feet high.

The next notable development was the application of steam to work the force-pumps. But this addition, which was made about 1830 by John Braithwaite, also did not alter the principle of the air-chamber.

John Braithwaite came of an engineering family. He was born in 1797, the third son of John Braithwaite, the constructor of one of the first diving-bells. The ancestors of the Braithwaites had conducted an engineer's business, or something analogous to it, at St. Albans ever since the year 1695.

The younger John entered his father's business, and from 1823, after his father and brother died, conducted it alone. Those were the days when steam was coming into vogue, and he began to manufacture high-pressure steam-engines. Together with Ericsson, he constructed the "Novelty," the locomotive which competed in the famous railway-engine contest at Rainhill in 1829, when Stephenson's "Rocket" won the prize. Braithwaite's engine, though it did not fulfil all the conditions of the competition, yet is said by some to have been the first locomotive to run a mile a minute—or rather more, for it is held to have covered a mile in fifty-six seconds. He used a bellows to fan the fire; and in his steam fire-engine, he also employed bellows, though on one day of the Rainhill contest the failure of the bellows rendered the locomotive incapable of doing work.

In the fire-engine, the bellows were worked by the wheels of the machine, and eighteen or twenty minutes were required to raise the steam. At the present time, a hundred pounds of steam can be raised in five minutes in the biggest engine of the London Brigade, this result being due, in one respect at least, to the use of water-tube boilers.

Braithwaite's engine of 1830 was fitted with an upright boiler, and was of scarcely six horse-power; but, nevertheless, it forced about fifteen gallons of water per minute from eighty to ninety feet high. The pistons for the steam and water respectively were on opposite ends of the same rod, that for steam being 7 inches in diameter, and for the water 6½ inches, and both having a stroke of 16 inches.

The engine was successful in its day. During an hour's work, it would throw between thirty and forty tons of water on a fire; while another engine, also made by Braithwaite, threw the larger quantity of ninety tons an hour.

The steam fire-engine was first used at the burning of the Argyle Rooms in London in 1830; it was also used at the fire of the English Opera-House in the same year, and at the great fire at the Houses of Parliament in 1834. But, curiously enough, a great prejudice existed against it, and the engine was at length destroyed by a London mob. The fire-brigade were also against it. So Braithwaite gave it up; but he built a few others, one at least being for Berlin, where it seems to have given great satisfaction.

Braithwaite, who became engineer-in-chief to the Eastern Counties Railway, also applied steam to a floating fire-engine, and constructed the machinery so that the power could be rapidly changed from propelling the vessel to operating the pumps.

The brigade could not long disregard the use of steam. In 1852, their manual-float was altered to a steamer, the alterations being made by Messrs. Shand & Mason. Six years later, the firm made a land steam fire-engine, which, however, was sent to St. Petersburg; and then in 1860—thirty years after Braithwaite had introduced the machine—the London Brigade hired one for a year. The experiment was successful, and a steam fire-engine was purchased from the same makers. But only two steam fire-engines were at work at the great Tooley Street fire.

Then, in July, 1863, a steam fire-engine competition took place at the Crystal Palace, the trials lasting three days. Lord Sutherland was chairman, and Captain Shaw, who was then chief of the London Brigade, was honorary secretary of the competition committee. In the result, Merryweather & Son won the first prize in the large-class engine, and Shand & Mason the second prize. Shand & Mason also took the first prize in the small class, and Lee & Co. the second prize in the small class. The value of the steam fire-engine was fully established.

At the present time, Messrs. Shand & Mason have an engine capable of throwing a thousand gallons a minute; while one of the water-floats of the London Brigade will throw thirteen hundred and fifty gallons a minute. These powerful machines form a striking development of Newsham's engine of 1726, and afford a remarkable contrast to the old fire-quenching appliances of former times.

But while the development of the modern fire-engine had been proceeding, a not less remarkable organization of firemen had been growing. It arose in a very singular, and yet under the circumstances a not unnatural, manner. And to this part of the story we must now turn our attention.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page