CHAPTER II THE CAPTURE, PREPARATION, AND PRESERVATION OF SPECIMENS

Previous

Shelley.

"Do not mash your specimens!"—The Professor.

COLLECTING APPARATUS

Nets.—In the capture of insects of all orders, and especially of butterflies and moths, one of the most important instruments is the net. German naturalists make use of what are known as shears (Scheren), which are made like gigantic scissors, having at the end two large oval rings upon which wire gauze or fine netting is stretched. With this implement, which looks like an old-fashioned candle-snuffer of colossal size, they succeed in collecting specimens without doing much injury. Shears are, however, not much in vogue among the naturalists of other countries. The favorite instrument for the ordinary collector is the net. Nets may be made in various ways and of various materials. There are a multitude of devices which have been invented for enabling the net to be folded up so as to occupy but little space when not in use. The simplest form of the net, which can be made almost anywhere, is constructed as follows: A rod—preferably of bamboo, or some other light, stiff material—is used as the handle, not more than five feet in length. Attached to this at its upper end, a loop or ring made of metal, or some moderately stiff

Fig. 43.—Plan for folding net-ring: c, halves of ring detached; b, upper joint of the halves; a, ring set; d, cap of ferrule; f, cap of ferrule, showing screw in place; e, screw (Riley).
Fig. 44.—a, net; b, ferrule to receive handle; c, wire hoop to be fastened in the upper end of the ferrule (Riley).
Fig. 45.—a, ring of metal tied with wire at a; b, ferrule; c, plug put in before pouring in solder (Riley).

yet flexible material, should be tied securely. Upon this there should be sewed a bag of fine netting, preferably tarletan. The bag should be quite long, not less than eighteen inches deep; the ring should be not less than a foot in diameter. Such a net can be made at a cost of but a few cents, and will be, in most cases, as efficient as any of the more expensive nets which are more carefully constructed. A good, cheap ring for a net may be made by using the brass ferrule of a fishing-rod. The ferrule should be at least three quarters of an inch in diameter. Into this insert the ends of a metal ring made by bending brass, aluminium, or iron wire into the proper form. When the ends have been inserted into the ferrule, melted solder or lead may be poured into it, and the ends of the wire forming the ring will be thus firmly secured in the ferrule. The ferrule can then be inserted into its mate placed at the end of a bamboo rod. I have commonly obtained for this purpose the last joint or butt of a fishing-rod as the handle of a net. Such a handle can often be purchased for a small sum from a dealer in fishing-rods. It can be made very cheaply. Any kind of a stick, if not too heavy, will do. It is sometimes convenient to have it in your power to lengthen the handle of your net so as to reach objects that are at some elevation above the head, and for this purpose I have had nets made with handles capable of being lengthened by jointed extensions. In collecting in tropical countries, among tall shrubbery and undergrowth, nets thus made, capable of having their handles greatly lengthened, have often proved serviceable. One of the most successful collectors I have ever had in my employment made his net by simply bending a piece of bamboo into the form of the frame of an Indian snow-shoe, to which he attached a handle about a foot and a half in length, and to this he affixed a bag of netting. He was, however, a Japanese, and possessed a singular dexterity in the capture of specimens with this simple apparatus to which I myself never attained. When tarletan cannot be had, ordinary mosquito-netting will do as the material for the bag. It is, however, too coarse in the mesh for many delicate and minute species. Very fine netting for the manufacture of the bags is made in Switzerland, and can be obtained from reputable dealers.

In order to protect and preserve the net, it is well to bind it with some thin muslin at the point where it is joined to the ring. Nets are sometimes made with a strip of muslin, about two inches wide, attached to the entire circumference of the ring, and to this strip of muslin the bag is sewed. For my part, I prefer gray or green as the color for a net. White should be avoided, as experience shows that a white net will often alarm an insect when a net of darker material will not cause it to fly before the collector is ready to bring the net down over the spot where it is settled.

Collecting-Jars.—In killing insects various methods have been used. In practice the most approved method is to employ a jar charged with cyanide of potash or with carbonate of ammonia. For large moths and butterflies cyanide of potash and carbonate of ammonia serve very well, but it must be remembered that carbonate of ammonia bleaches insects which are green in color. It is well, in my judgment, to use a drop or two of chloroform in the jar charged with carbonate of ammonia, for the collection of diurnal lepidoptera. By putting a few drops of chloroform into the jar, the insect is anesthetized, and its struggles are made quickly to cease. The principal objection to chloroform is the fact that it induces rigidity of the thoracic muscles, which subsequently sometimes interferes with handsome setting.

Fig. 46.—Cyanide-jar prepared for use: P, perforated cardboard; Cy, lumps of cyanide of potash.
Fig. 47.—Piece of paper punctured and slit for pasting over the cyanide in the collecting-jar.

In the preparation of the poisoning-jar it is well to use a jar which has a ground-glass stopper, and the mouth of which is about three inches in diameter. This will be large enough for most specimens. The one-pound hydrate of chloral jars, provided with glass stoppers and sold by Schering, make the neatest collecting-jars that are known to the writer. I have found it well to have such jars partly covered with leather after the fashion of a drinking-flask. An opening in the leather is left on either side, permitting an inspection of the contents of the jar. The leather protects from breakage. At the bottom of such a jar a few lumps of cyanide of potash, about the size of a filbert, should be placed. Over this may be laid a little cotton, to prevent the lumps from rattling about loosely at the bottom of the jar. Over the cotton there is pasted a sheet of strong white paper, perforated with a multitude of holes. In securing the white paper over the cyanide, the writer has resorted to a simple method which is explained in the annexed diagram. A piece of paper is placed under the jar, and a circle the size of the inside of the jar is traced upon it. Then a disk is cut out about three quarters of an inch greater in diameter than the original circle (Fig. 47). The paper is punctured over the entire surface included within the inner line, and then, with a scissors, little gashes are made from the outer circumference inward, so as to permit of the folding up of the edge of the disk. A little gum tragacanth is then applied to these upturned edges; and it is inserted into the jar and pasted securely over the cyanide by the upturned flaps. A jar thus charged will last for a long time, if kept properly closed when not in use. Cyanide of potash has a tendency to deliquesce, or melt down in the presence of moisture, and in very humid climates or damp places, if the jar is not kept well stoppered, the cyanide will quickly become semi-fluid, the paper will become moist, and specimens placed in the jar will be injured or completely ruined. It is well, however, to bear in mind the fact that the fumes of hydrocyanic acid (prussic acid), which are active in producing the death of the insect, will not be given off in sufficient volume unless there is some small amount of moisture present in the jar; and in a very dry climate the writer has found it sometimes necessary to add a drop or two of water from time to time to the cyanide. The same method which has been described for charging a jar with cyanide of potash can be employed in charging it with carbonate of ammonia.

Fig. 48.—Method of disabling a butterfly by pinching it when in the net.

Field-Boxes.—In collecting butterflies it is often possible to kill, or half kill, the specimens contained in the net by a smart pinch administered to the insect by the thumb and the first finger, the pressure being applied from without the net (Fig. 48). This mode of procedure, however, unless the operator is careful, is apt to somewhat damage the specimens. The writer prefers to hold the insect firmly between the thumb and the first finger, and apply a drop or two of chloroform from a vial which should be carried in the upper left-hand vest-pocket. The application of the chloroform will cause the insect to cease its struggles immediately, and it may then be placed in the poisoning-jar, or it may be pinned into the field-box. The field-box, which should be worn at the side, securely held in its place by a strap going over the shoulder and by another strap around the waist, may be provided with the poisoning apparatus or may be without it. In the former case the box should be of tin, and should have securely fastened in one corner some lumps of cyanide, tied in gauze. The box should be very tight, so that when it is closed the fumes of the cyanide may be retained. The bottom should be covered with cork, upon which the specimens, as they are withdrawn from the poisoning-jar, should be pinned. It is well to bear strictly in mind that it is a mistake to continue to put one specimen after another into the poisoning-jar until it is half filled or quite filled with specimens. In walking about the field, if there are several insects in the jar at a time, they are likely to become rubbed and their beauty partially destroyed by being tossed about as the collector moves from place to place; and a large insect placed in a jar in which there are one or two smaller insects will in its death-struggles possibly injure the latter. So, as fast as the insects are partially asphyxiated, or deprived of the power of motion, they should be removed from the poisoning-jar to the poisoning-box, where they are pinned in place and prevented from rubbing one against the other. Some collectors prefer simply to stun the insects, and then pin them into the field-box, where they are left, in whole or in part, to recover their vitality, to be subsequently put to death upon the return of the collector from the field. This mode of procedure, while undoubtedly it yields in the hands of a skilful operator the most beautiful specimens, appears to the writer to be somewhat cruel, and he does not therefore approve of it.

The Use of the Net.—In the use of the net the old saying is true that "practice makes perfect." The bag of the net should be sufficiently long to allow of its being completely closed when hanging from the ring on either side. It is possible to sweep into the net an insect which is fluttering through the air, and then by a turn of the hand to close the bag and to capture the specimen. When the insect has alighted upon the ground it is best to clap the net over it and then to raise the net with one hand. Very many species have the habit of flying upward. This is particularly true of the skippers, a group of very vigorous and swift-flying butterflies. The writer prefers, if possible, to clap the net over the specimens and then to allow them to rise, and, by inserting the wide-mouthed collecting-jar below, to capture them without touching them at all with the fingers. So far as possible the fingers should not be allowed to come in contact with specimens, whether in or out of the net, though some persons acquire an extremely delicate yet firm touch which enables them to handle the wings of frail species without removing any of the scales. Nothing is more unsightly in a collection than specimens that have been caught and rubbed by the fingers.

Baits.—Moths are frequently taken by the method of collecting known as "sugaring." But it may also be employed for butterflies. For this purpose a mixture of beer and cheap brown sugar may be used. If the beer be stale drippings, so much the better. In fact, it is well, if the collector intends to remain in one locality for some time, to make a mixture of beer and sugar some hours or a day in advance of its application. In semi-tropical countries a mixture of beer and sugar is hardly as good as a mixture of molasses and water into which a few tablespoonfuls of Jamaica rum have been put. A mixture thus prepared seems to attract more effectually than the first prescription. Having provided a pail with a quart or two of the mixture, the collector resorts to the point where he proposes to carry on his work. With an ordinary whitewash brush the mixture is applied to the trunks of trees, stumps, fence-rails, and other objects. It is well to apply the mixture to a series of trees and posts located on the side of a bit of woodland, or along a path through forests, if comparatively open and not too dense. The writer has rarely had success in sugaring in the depths of forests. His greatest success has always been on paths and at the edge of woods. Many beetles and other insects come to the tempting sweets, and separate jars for capturing these should be carried in the pocket. The collector never should attempt to kill beetles in the same jar into which he is putting butterflies. The hard, horny bodies and spiny legs of beetles will make sad havoc with the delicate wings of butterflies.

Many other baits besides this may be employed to attract insects. Some writers recommend a bait prepared by boiling dried apples and mashing them into a pulp, adding a little rum to the mixture, and applying this to the bark of trees. In tropical countries bananas, especially rotten bananas, seem to have a charm for insects. The cane-trash at sugar-mills is very attractive. If possible, it is well to obtain a quantity of this trash and scatter it along forest paths. Some insects have very peculiar appetites and are attracted by things loathsome. The ordure of carnivorous animals seems to have a special charm for some of the most magnificently colored and the rarest of tropical butterflies. A friend of mine in Africa, who collected for me for a number of years, used to keep civet-cats, the ordure of which was collected and placed at appropriate points in the forest paths; and he was richly rewarded by obtaining many insects which were not obtained in any other way. Putrid fish have a charm for other species, and dead snakes, when rankly high, will attract still others. It may be observed that after the trees have been treated for a succession of days or nights with the sweetening mixture spoken of above, they become very productive. When collecting in Japan I made it a rule to return in the morning to the spots that I had sugared for moths the evening before, and I was always amply repaid by finding multitudes of butterflies and even a good many day-flying moths seated upon the mossy bark, feasting upon the remnants of the banquet I had provided the evening before. There is no sport—I do not except that of the angler—which is more fascinating than the sport derived by an enthusiastic entomologist from the practice of "sugaring." It is well, however, to know always where your path leads, and not to lay it out in the dusk, as the writer once did when staying at a well-known summer resort in Virginia. The path which he had chosen as the scene of operations was unfortunately laid, all unknown to himself, just in the rear of the poultry-house of a man who sold chickens to the hotel; and when he saw the dark lantern mysteriously moving about, he concluded that some one with designs upon his hens was hidden in the woods, and opened fire with a seven-shooter, thus coming very near to terminating abruptly the career of an ardent entomologist.

Beating.—There are many species which are apparently not attracted by baits such as we have spoken of in the preceding paragraph. The collector, passing through the grove, searches diligently with his eye and captures what he can see, but does not fail also with the end of his net-handle to tap the trunks of trees and to shake the bushes, and as the insects fly out, to note the point where they settle, and then make them his prey. It is well in this work, as in all collecting, to proceed somewhat leisurely, and to keep perfectly cool. The caricature sometimes found in newspapers of the ardent lepidopterist running like a "quarter-back" across a ten-acre lot in quest of some flying insect does not represent the truly skilful collector, whose movements are more or less stealthy and cautious.

THE BREEDING OF SPECIMENS

By breeding it is possible to obtain specimens in the most perfect condition. Bred specimens which have not had an opportunity to fly are always preferred on account of their freshness of color and perfection of form. A great many species which apparently are exceedingly rare may often be obtained in considerable numbers by the process of breeding, the caterpillar being more readily found than the perfect insect. Although the process of breeding involves a good deal of labor and care, it affords a most delightful field for observation, and the returns are frequently of the very greatest value.

How to Get the Eggs of Butterflies.—The process of breeding may begin with the egg. The skilful eye of the student will detect the eggs of butterflies upon the leaves upon which they have been deposited. The twig may be cut and placed in a vase, in water, and kept fresh until the minute caterpillar emerges, and then from time to time it may be transferred to fresh leaves of the same species of plant, and it will continue to make its moults until at last it is transformed into a chrysalis, and in due season the butterfly emerges. Eggs may frequently be obtained in considerable numbers by confining the female under gauze, with the appropriate food-plant. A knowledge of the food-plant may often be obtained by watching the female and observing upon what plants she deposits her eggs. The exceedingly beautiful researches of Mr. W.H. Edwards were largely promoted by his skill in inducing females to oviposit upon their food-plants. He did this generally by confining the female with the food-plant in a barrel or nail-keg, the bottom of which had been knocked out, and over the top of which he tied mosquito-netting. The plant was placed under the keg. The insects thus confined may be fed with a mixture of honey and water placed upon the leaves.

In collecting caterpillars it is well to have on hand a number of small boxes in which to place them, and also a botany-box in which to bring from the field a supply of their appropriate food.

The process of breeding may begin with the caterpillar. The collector, having discovered the caterpillar feeding upon the branch of a certain plant, provides the creature with a constant supply of the fresh foliage of the same plant, until it finally pupates.

Fig. 49.—Cheap form of breeding-cage: G, lid covered with mosquito-netting; E, pan of earth; B, bottle for food-plant.

Breeding-Cages.—Various devices for breeding caterpillars and rearing moths and butterflies are known. One of the most important of these devices is the breeding-cage, which is sometimes called a vivarium. The simplest form of the vivarium is often the best. In breeding some species the best method is simply to pot a plant of the species upon which the larva is known to feed, and to place the potted plant in a box over which some mosquito-netting is tied. The writer frequently employs for this purpose cylinders of glass over the top of which perforated cardboard is placed. This method, however, can be resorted to only with the more minute forms and with plants that do not attain great height. Another form of vivarium is represented in the adjoining woodcut (Fig. 50). The writer has successfully employed, for breeding insects upon a large scale, ordinary store boxes provided with a lid made by fastening together four pieces of wood, making a frame large enough to cover the top of the box, and covering it with gauze. The food-plant is kept fresh in bottles or jars which are set into the boxes. Be careful, however, after you have put the branches upon which the caterpillars are feeding into the jars, to stuff something into the neck of the jar so as to prevent the caterpillar from accidentally getting into the water and drowning himself—a mishap which otherwise might occur. When breeding is undertaken on a still larger scale, it may be well to set apart for this purpose a room, preferably in an outbuilding, all the openings leading from which should be carefully closed so as to prevent the escape of the caterpillars.

Fig. 50.—Breeding-cage: a, base, battened at g to prevent warping; b, removable body of cage, inclosing zinc pan, f, f, containing jar for plant, d, and filled with five inches of soil, e; c, removable top, covered with wire gauze. The doors and sides are of glass (Riley).

How to Find Caterpillars.—Many species of caterpillars are not hard to discover; they are more or less conspicuous objects, and strike the eye. Some species conceal themselves by weaving together the leaves of the plant on which they feed, or by bending a single leaf into a curved receptacle in which they lie hidden. Others conceal themselves during the daytime about the roots of trees or under bark or stones, only emerging in the night-time to feed upon the foliage. The collector will carefully search for these. The presence of caterpillars is generally indicated by the ravages which they have committed upon the foliage. By carefully scanning a branch the collector will observe that the leaves have been more or less devoured. Generally underneath the tree will be found the frass, or ejectamenta, of the caterpillar. The presence of the ejectamenta and the evidence of the ravages committed by the larvÆ upon the foliage will give the collector a clue to the whereabouts of the caterpillar. The writer has found it generally advantageous to search for caterpillars that feed upon trees along the wide, sandy margins of brooks and rivers. The frass is easily discovered upon the sand, and by casting the eye upward into the foliage it is often easy to detect the insect. The pavements in towns and cities which are bordered by trees may also very well be scanned for evidence of the presence of caterpillars. A favorite collecting-ground of the writer is one of the large cemeteries of the city in which he lives, in which there are numerous trees and a great quantity of shrubbery. Wood-boring species, as a rule, are more difficult to obtain and rear than those that feed upon the foliage.

Hibernating Caterpillars.—While some difficulty attends the preservation of chrysalids in the case of those species which pupate in the fall and pass the winter in the chrysalis state under the ground, far more difficulty attends the preservation of species which hibernate in the caterpillar state. As a rule, it is found best to expose the boxes containing these species in an ice-house or other cold place, keeping them there until there is available an abundant supply of the tender shoots of the plant upon which they are in the habit of feeding. They may then be brought forth from cold storage and placed in proximity to the food-plant, upon which they will proceed to feed.

THE PRESERVATION OF SPECIMENS

Papering Specimens.—When time and opportunities do not suffice for the proper preparation of butterflies for display in the permanent collection, the collector may, in the case of the larger species, conveniently place them in envelopes, with their wings folded (Fig. 51), and they may then be stored in a box until such time as he is able to relax the specimens and properly mount them. Thousands of insects are thus annually collected. The small drug envelopes, or the larger pay-roll envelopes, which may be bought in boxes by the thousand of any stationer for a comparatively small sum, are preferable because of their convenience. Many collectors, however, paper their specimens in envelopes which they make of oblong bits of paper adapted to the size of the insect. The process of making the envelope and of papering the insect is accurately depicted in the accompanying cut (Fig. 52). The writer finds it good in the case of small butterflies to place them in boxes between layers of cheap plush or velvet. A small box, a few inches long, may be provided, and at its bottom a layer of velvet is placed; upon this a number of small butterflies are laid. Over them is placed a layer of velvet, with its soft pile facing the same side of the velvet at the bottom. On top of this another piece of velvet is laid, with its pile upward, and other specimens are again deposited, and over this another piece of velvet is laid, and so on. If the box is not filled full at once, it is well to have enough pieces of velvet cut to fill it, or else place cotton on top, so as to keep the layers of velvet from moving or shaking about. A yard or two of plush or velvet will suffice for the packing of a thousand specimens of small butterflies.

Fig. 51.—Butterfly in envelope.
Fig. 52.—Method of folding paper for envelopes: first fold on line AB; then on AD and CB; then on BF and EA.

Mounting Butterflies.—When the collector has time enough at his disposal he should at once mount his specimens as they are intended to be displayed in the collection. We shall now proceed to explain the manner in which this is most advantageously accomplished. The insect should first of all be pinned. The pin should be thrust perpendicularly through the thorax, midway between the wings, and at a considerable elevation upon the pin. It should then be placed upon the setting-board or setting-block. Setting-boards or setting-blocks are pieces of wood having a groove on the upper surface of sufficient depth to accommodate the body of the insect and to permit the wings to be brought to the level of the upper surface of the board (Fig. 53). They should also be provided either with a cleft or a hole which will permit the pin to be thrust down below the body of the insect for a considerable distance. As a rule, the wings of all specimens should be mounted at a uniform elevation of about seven eighths of an inch above the point of the pin. This is known as the "continental method" of mounting, and is infinitely preferable to the old-fashioned "English method," in which the insect was pinned low down upon the pin, so that its wings touched the surface of the box.

Fig. 53.—Setting-board designed by the author. The wings of the insect are held in place by strips of tracing-muslin, such as is used by engineers. The grooves at the side serve to hold the board in place in the drying-box. (See Fig. 59.)
Fig. 54.—Setting-block: A, holes to enable the pin to reach to the cork; C, cork, filling groove on the bottom of the block; B, slit to hold thread.
Fig. 55.—Setting-block with butterfly expanded upon it.

Setting-blocks are most advantageously employed in setting small species, especially the HesperiidÆ, the wings of which are refractory. When the insect has been pinned upon the setting-board or setting-block, the next step is to set the wings in the position which they are to maintain when the specimen is thoroughly dry. This is accomplished by means of what are known as "setting-needles" (Fig. 56). Setting-needles may be easily made by simply sticking ordinary needles into wooden matches from which the tips have been removed. In drawing the wings into position, care should be taken to plant the setting-needle behind the strong nervure on the costal margin of the wing; otherwise the wings are liable to be torn and disfigured. The rule in setting lepidoptera is to draw the anterior wing forward in such a manner that the posterior margin of this wing is at right angles to the axis of the body, the axis of the body being a line drawn through the head to the extremity of the abdomen. The hind wing should then be moved forward, its anterior margin lying under the opposing margin of the front wing. When the wings have thus been adjusted into the position which they are to occupy, slips of tracing-muslin or of paper should be drawn down over them and securely pinned, the setting-needles being removed.

Fig. 56.—Setting-needle.

In pinning down the strips which are to hold the wings in place, be careful to pin around the wing, but never, if possible, through it. When the wings have been adjusted in the position in which they are to remain, the antennÆ, or feelers, should be attended to and drawn forward on the same plane as the wings and secured in place. This may ordinarily be done by setting pins in such a position as to hold them where they are to stay. Then the body, if it has a tendency to sag down at the end of the abdomen, should be raised. This may also be accomplished by means of pins thrust beneath on either side. The figure on the next page shows more clearly what is intended. When the insect has been set, the board should be put aside in a place where it will not be molested or attacked by pests, and the specimens upon it allowed to dry. A box with shelves in it is often used for this purpose. This box should have a door at the front covered with wire gauze, and the back should also be open, covered with gauze, so as to allow a free circulation of air. A few balls of naphthaline placed in it will tend to keep away mites and other pests. The time during which the specimen should remain on the board until it is dried varies with its size and the condition of the atmosphere. Most butterflies and moths in dry weather will be sufficiently dried to permit of their removal from the setting-boards in a week; but large, stout-bodied moths may require as much as two weeks, or even more time, before they are dry enough to be taken off the boards. The process of drying may be hastened by placing the boards in an oven, but the temperature of the oven must be quite low. If too much heat is applied, great injury is sure to result. Only a careful and expert operator should resort to the use of the oven, a temperature above 120°F. being sure to work mischief.

Fig. 57.—Setting-board with moth expanded upon it (Riley).

Fig. 58.—Butterfly pinned on board, showing method of holding up body and pinning down antennÆ.
Fig. 59.—Drying-box: a, setting-board partly pulled out; b, T-shaped strip working in groove on setting-board; c, front door, sliding down by tongue, d, working in a groove at side in front.

Relaxing Specimens.—When butterflies or moths have been put up in papers or mounted on pins without having their wings expanded and set it becomes necessary, before setting them, to relax them. This may be accomplished in several ways. If the specimens have been pinned it is best to place them on pieces of sheet-cork on a tray of sand which has been thoroughly moistened and treated with a good dose of carbolic acid. Over all a bell-glass is put. A tight tin box will serve the same purpose, but a broad sheet of bibulous paper should always be put over the box, under the lid, before closing it, and in such a way as to leave the edges of the paper projecting around the edges of the lid. This is done to absorb the moisture which might settle by condensation upon the lid and drop upon the specimens. In a bell-glass the moisture generally trickles down the sides. Earthenware crocks with closely fitting lids are even better than tin boxes, but they must have paper put over them, before closing, in the same way as is done when tin boxes are used. When specimens have been preserved in papers or envelopes these should be opened a little and laid upon damp, carbolized sand under a bell-glass or in a closed receptacle of some kind. Papered specimens may also be placed in their envelopes between clean towels, which have been moistened in water to which a little carbolic acid has been added. The towels should be wrung out quite dry before using them. The method of placing between towels should never be used in the case of very small and delicate species and those which are blue or green in color. Great care must be exercised not to allow the insects to become soaked or unduly wet. This ruins them. They should, however, be damp enough to allow the wings and other organs to be freely moved. When the insects have been relaxed they may be pinned and expanded on setting-boards like freshly caught specimens. It is well in setting the wings of relaxed specimens, after having thrust the pin through the body, to take a small forceps and, seizing the wings just where they join the body, gently move them so as to open them and make their movement easy before pinning them upon the setting-board. The skilful manipulator in this way quickly ascertains whether they have been sufficiently relaxed to admit of their being readily set. If discovered to be too stiff and liable to break they must be still further relaxed. Dried specimens which have been relaxed and then mounted generally require only a short time to dry again, and need rarely be kept more than twenty-four hours upon the setting-boards.

Fig. 60.—Drying-box (Riley).

The process of setting insects upon setting-blocks is exactly the same as when setting-boards are used, with the simple difference that, instead of pinning strips of paper or tracing-muslin over the wings, the wings are held in place by threads or very narrow tapes, which are wound around the block. When the wings are not covered with a very deep and velvety covering of scales the threads or tapes maybe used alone; but when the wings are thus clothed it becomes necessary to put bits of paper or cardboard over the wings before wrapping with the threads. Unless this is done the marks of the threads will be left upon the wings. Some little skill, which is easily acquired by practice, is necessary in order to employ setting-blocks to advantage, but in the case of small species and species which have refractory wings they are much to be preferred to the boards.

The Preparation and Preservation of Eggs.—The eggs of butterflies may be preserved by simply putting them into tubes containing alcohol, or they may be placed in vials containing dilute glycerine or a solution of common salt. The vials should be kept tightly corked and should be marked by a label written with a lead-pencil and placed within the bottle, upon which the name of the species and the date of collection should be noted, or a reference made to the collector's note-book. Unless the eggs of insects are preserved in fluid they are apt in many cases to dry up and become distorted, because, on account of their small size, it is impossible to void them of their contents. The larvÆ escaping from eggs often void the shell very neatly, leaving, however, a large orifice. Such remnants of shells may be preserved, as they often are useful in showing some of the details of marking; but great vigilance in securing them should be exercised, for almost all the larvÆ of butterflies have the curious habit of whetting their appetites for future repasts by turning around and either wholly or partially devouring the shell of the egg which they have quitted. Eggs are most neatly mounted in the form of microscopic slides in glycerine jelly contained in cells of appropriate depth and diameter. It is best, if possible, to mount several specimens upon the same slide, showing the side of the egg as well as the end. A cabinet filled with the eggs of butterflies thus mounted is valuable and curious.

The Preservation of Chrysalids.—Chrysalids may be deprived of their vitality by simply immersing them in alcohol, or they may be killed by means of chloroform, and they may then be fastened upon pins like the imago, and arranged appropriately in the collection with the species. Some chrysalids, however, lose their color when killed in this way, and it is occasionally well to void them of their contents by making an opening and carefully removing the parts that are contained within, replacing with some material which will prevent the chrysalis from shrinking and shriveling. This method of preserving need, however, be resorted to only in exceptional cases. When a butterfly has escaped from its chrysalis it frequently leaves the entire shell behind, with the parts somewhat sundered, yet, nevertheless, furnishing a clear idea of the structure of the chrysalis. If no other specimen of the chrysalis can be obtained than these voided shells they should be preserved.

The Preservation of Caterpillars.—The caterpillars of butterflies when they first emerge from the egg, and before they make the first moult, are, for the most part, extremely small, and are best preserved as microscopic objects in cells filled with glycerine. After each successive moult the larva increases rapidly in size. These various stages in the development of the caterpillar should all be noted and preserved, and it is customary to put up these collections in vials filled with alcohol or a solution of formaline (which latter, by the by, is preferable to alcohol), or to inflate them. The method of inflation secures the best specimens.

In inflating larvÆ the first step is carefully to remove the contents of the larval skin. This may be done by making an incision with a stout pin or a needle at the anal extremity, and then, between the folds of a soft towel or cloth, pressing out the contents of the abdominal cavity. The pressure should be first applied near the point where the pellicle has been punctured, and should then be carried forward until the region of the head is reached. Care must be exercised to apply only enough pressure to expel the contents of the skin without disturbing the tissues which lie nearest to the epidermis, in which the pigments are located, and not to remove the hairs which are attached to the body. Pressure sufficient to bruise the skin should never be applied. A little practice soon imparts the required dexterity. The contents of the larval skin having been removed, the next step is to inflate and dry the empty skin. A compact statement of the method of performing this operation is contained in Hornaday's "Taxidermy and ZoÖlogical Collecting," from the pen of the writer, and I herewith reproduce it:

Fig. 61.—Apparatus for inflating larvÆ: B, foot-bellows; K, rubber tube; C, flask; D, anhydrous sulphuric acid; E, overflow-flask; F, rubber tube from flask; G, standard with cock to regulate flow of air; H, glass tube with larva upon it; I, copper drying-plate; J, spirit-lamp. Fig. 61.—Apparatus for inflating larvÆ: B, foot-bellows; K, rubber tube; C, flask; D, anhydrous sulphuric acid; E, overflow-flask; F, rubber tube from flask; G, standard with cock to regulate flow of air; H, glass tube with larva upon it; I, copper drying-plate; J, spirit-lamp.

"The simplest method of inflating the skins of larvÆ after the contents have been withdrawn is to insert a straw or grass stem of appropriate thickness into the opening through which the contents have been removed, and then by the breath to inflate the specimen, while holding over the chimney of an Argand lamp, the flame of which must be regulated so as not to scorch or singe it. Care must be taken in the act of inflating not to unduly distend the larval skin, thus producing a distortion, and also to dry it thoroughly. Unless the latter precaution is observed a subsequent shrinking and disfigurement will take place. The process of inflating in the manner just described is somewhat laborious, and while some of the finest specimens which the writer has ever seen were prepared in this primitive manner, various expedients for lessening the labor involved have been devised, some of which are to be highly commended.

Fig. 62.—Tip of inflating-tube, with armature for holding larval skin.
Fig. 63.—Drying-oven: A, lamp; B, pin to hold door open; C, door open; D, glass cover.

"A comparatively inexpensive arrangement for inflating larvÆ is a modification of that described in the 'Entomologische Nachrichten' (1879, vol. v, p. 7), devised by Mr. Fritz A. Wachtel (Fig. 61). It consists of a foot-bellows such as is used by chemists in the laboratory, or, better still, of a small cylinder such as is used for holding gas in operating the oxyhydrogen lamp of a sciopticon. In the latter case the compressed air should not have a pressure exceeding twenty pounds to the square inch, and the cock regulating the flow from the cylinder should be capable of very fine adjustment. By means of a rubber tube the air is conveyed from the cylinder to a couple of flasks, one of which contains concentrated sulphuric acid, and the other is intended for the reception of any overflow of the hydrated sulphuric acid which may occur. The object of passing the air through sulphuric acid is to rob it, so far as possible, of its moisture. It is then conveyed into a flask, which is heated upon a sand-bath, and thence by a piece of flexible tubing to a tip mounted on a joint allowing vertical and horizontal motion and secured by a standard to the working-table. The flow of air through the tip is regulated by a cock. Upon the tip is fastened a small rubber tube, into the free extremity of which is inserted a fine-pointed glass tube. This is provided with an armature consisting of two steel springs fastened upon opposite sides, and their ends bent at right angles in such a way as to hold the larval skin firmly to the extremity of the tube. The skin having been adjusted upon the fine point of the tube, the bellows is put into operation, and the skin is inflated. A drying apparatus is provided in several ways. A copper plate mounted upon four legs, and heated by an alcohol-lamp placed below, has been advocated by some. A better arrangement, used by the writer, consists of a small oven heated by the flame of an alcohol-lamp or by jets of natural gas, and provided with circular openings of various sizes, into which the larval skin is introduced (Fig. 63).

"A less commendable method of preserving larvÆ is to place them in alcohol. The larvÆ should be tied up in sacks of light gauze netting, and a label of tough paper, with the date and locality of capture, and the name, if known, written with a lead-pencil, should be attached to each such little sack. Do not use ink on labels to be immersed, but a hard lead-pencil. Alcoholic specimens are liable to become shriveled and discolored, and are not nearly as valuable as well-inflated and dried skins.

Fig. 64.—Drying-oven: a, sliding door; b, lid; c, body of oven with glass sides; d, opening for inserting inflating-tube; e, copper bottom; f, spirit-lamp; g, base (Riley).

"When the skins have been inflated they may be mounted readily by being placed upon wires wrapped with green silk, or upon annealed aluminium wire. The wires are bent and twisted together for a short distance and then made to diverge. The diverging ends are pressed together, a little shellac is placed upon their tips, and they are then inserted into the opening at the anal extremity of the larval skin. Upon the release of pressure they spread apart, and after the shellac has dried the skin is firmly held by them. They may then be attached to pins by simply twisting the free end of the wire about the pin, or they may be placed upon artificial imitations of the leaves and twigs of their appropriate food-plants."

THE PRESERVATION AND ARRANGEMENT OF COLLECTIONS

The secret of preserving collections of lepidoptera in beautiful condition is to exclude light, moisture, and insect pests. Light ultimately bleaches many species, moisture leads to mould and mildew, and insect pests devour the specimens. The main thing is therefore to have the receptacles in which the specimens are placed dark and as nearly as possible hermetically sealed and kept in a dry place. In order to accomplish this, various devices have been resorted to.

Boxes.—Boxes for the preservation of specimens are made with a tongue on the edges of the bottom fitting into a groove upon the lid, or they may be made with inside pieces fastened around the inner edge of the bottom and projecting so as to catch the lid. The accompanying outlines show the method of joining different forms of boxes (Figs. 65-67). The bottom of the box should be lined with some substance which will enable the specimens to be pinned into it securely. For this purpose sheet-cork about a quarter of an inch thick is to be preferred to all other substances. Ground cork pressed into layers and covered with white paper is manufactured for the purpose of lining boxes. Turf compressed into sheets about half an inch thick and covered with paper is used by many European collectors. Sheets of aloe-pith or of the wood of the yucca, half an inch thick, are used, and the pith of corn-stalks (Indian corn or maize) may also be employed, laid into the box and glued neatly to the bottom. The corn-pith should be cut into pieces about half an inch square and joined together neatly, covering it with thin white paper after the surface has been made quite even and true. Cork is, however, the best material, for, though more expensive than the other things named, it has greater power to hold the pins, and unless these are securely fixed and held in place great damage is sure to result. A loose specimen in a box will work incalculable damage. Boxes should be made of light, thoroughly seasoned wood, and should be very tight. They are sometimes made so that specimens may be pinned both upon the top and the bottom, but this is not to be commended. The depth of the box should be sufficient to admit of the use of the longest insect-pin in use, and a depth between top and bottom of two and a quarter inches is therefore sufficient. Boxes are sometimes made with backs in imitation of books, and a collection arranged in such boxes presents an attractive external appearance. A very good box is made for the United States Department of Agriculture and for the Carnegie Museum in Pittsburgh (Fig. 68). This box is thirteen inches long, nine inches wide, and three inches thick (external measurement). The depth between the bottom and the lid on the inside is two and one eighth inches. The ends and sides are dovetailed; the top and bottom are each made of two pieces of light stuff, about one eighth of an inch thick, glued together in such a way that the grain of the two pieces crosses at right angles, and all cracking and warping are thus prevented. The lids are secured to the bottoms by brass hooks fitting into eyelets. Such boxes provided with cork do not cost more than fifty-five cents apiece when bought in quantities. Boxes may be made of stout pasteboard about one eighth or three sixteenths of an inch thick, with a rabbet-tongue on the inside. Such boxes are much used in France and England, and when well and substantially made are most excellent. They may be obtained for about thirty-five cents apiece lined with compressed cork.

Fig. 67.—Detail drawing of box, in which the tongue, z, is made of strips of zinc let into a groove and fastened as at n; g, groove to catch tongue; s, s, top and bottom; c, cork.
Fig. 68.—Insect-box for preservation of collections.

Cabinets and Drawers.—Large collections which are intended to be frequently consulted are best preserved in cabinets fitted with glass-covered drawers. A great deal of variety exists in the plans which are adopted for the display of specimens in cabinets. Much depends upon the taste and the financial ability of the collector. Large sums of money may be expended upon cabinets, but the main thing is to secure the specimens from dust, mould, and insect pests. The point to be observed most carefully is so to arrange the drawers that they are, like the boxes, practically air-tight. The writer employs as the standard size for the drawers in his own collection and in the Carnegie Museum a drawer which is twenty-two inches long, sixteen inches wide, and two inches deep (inside measurement). The outside dimensions are: length, twenty-three inches exclusive of face; breadth, seventeen inches; height, two and three eighths inches. The covers are glazed with double-strength glass. They are held upon the bottoms by a rabbet placed inside of the bottom and nearly reaching the lower surface of the glass on the cover when closed. The drawers are lined upon the bottom with cork five sixteenths of an inch thick, and are papered on the bottom and sides with good linen paper, which does not easily become discolored. Each drawer is faced with cherry and has a knob. These drawers are arranged in cabinets built in sections for convenience in handling. The two lower sections each contain thirty drawers, the upper section nine. The drawers are arranged in three perpendicular series and are made interchangeable, so that any drawer will fit into any place in any one of the cabinets. This is very necessary, as it admits of the easy rearrangement of collections. On the sides of each drawer a pocket is cut on the inner surface, which communicates through an opening in the rabbet with the interior. The paper lining the inside is perforated over this opening with a number of small holes. The pocket is kept filled with naphthaline crystals, the fumes of which pass into the interior and tend to keep away pests. The accompanying figure gives the details of construction (Fig. 69). Such drawers can be made at a cost of about $3.50 apiece, and the cost of a cabinet finished and supplied with them is about $325, made of cherry, finished in imitation of mahogany.

Fig. 69.—Detail drawing of drawer for cabinet: e, e, ends; b, bottom; c, cork; p, p, paper strips in corners of lid to exclude dust; g, g, glass of cover, held in place by top strips, s, s; m, m, side pieces serving as rabbets on inside; po, pocket in ends and sides, sawn out of the wood; x, opening through the rabbet into this pocket; y, holes through the paper lining, p1, allowing fumes of naphthaline to enter interior of drawer; f, front; k, knob; o, lunette cut in edge of the top piece to enable the lid to be raised by inserting the fingers.

Some persons prefer to have the bottoms as well as the tops of the drawers in their cabinets made of glass. In such cases the specimens are pinned upon narrow strips of wood covered with cork, securely fastened across the inside of the drawers. This arrangement enables the under side of specimens to be examined and compared with as much freedom as the upper side, and without removing them from the drawers; but the strips are liable at times to become loosened, and when this happens great havoc is wrought among the specimens if the drawer is moved carelessly. Besides, there is more danger of breakage.

Another way of providing a cheap and very sightly lining for the bottom of an insect-box is illustrated in Fig. 70. A frame of wood like a slate-frame is provided, and on both sides paper is stretched. To stretch the paper it ought to be soaked in water before pasting to the frame; then when it dries it is as tight and smooth as a drum-head.

The beginner who has not a long purse will do well to preserve his collections in boxes such as have been described. They can be obtained quite cheaply and are most excellent. Cabinets are more or less of a luxury for the amateur, and are only a necessity in the case of great collections which are constantly being consulted. The boxes may be arranged upon shelves. Some of the largest and best collections in the world are preserved in boxes, notably those of the United States National Museum.

Fig. 70.—A, A, side and bottom of box; B, frame fitting into box; C, space which must be left between frame and bottom of box; P, P, paper stretched on frame.

Labeling.—Each specimen should have on the pin below the specimen a small label giving the date of capture, if known, and the locality. Below this should be a label of larger size, giving its scientific name, if ascertained, and the sex. Labels should be neat and uniform in size. A good size for labels for large species is about one inch long and five eighths of an inch wide. The labels should be written in a fine but legible hand. Smaller labels may be used for smaller species. A crow-quill pen and India ink are to be preferred in writing labels.

Arrangement of Specimens.—Specimens are best arranged in rows. The males should be pinned in first in the series, after them the females. Varieties should follow the species. After these should be placed any aberrations or monstrosities which the collector may possess. The name of the genus should precede all the species contained in the collection, and after each species the specific name should be placed Fig. 71 shows the manner of arrangement.

Fig. 71.—Manner of arranging specimens in cabinet.

Insect Pests.—In order to preserve collections, great care must be taken to exclude the various forms of insect pests, which are likely, unless destroyed and kept from attacking the specimens, to ruin them utterly in comparatively a short time. The pests which are most to be feared are beetles belonging to the genera Dermestes and Anthrenus. In addition to these beetles, which commit their ravages in the larval stage, moths and mites prey upon collections. Moths are very infrequently, however, found in collections of insects, and in a long experience the writer has known only one or two instances in which any damage was inflicted upon specimens by the larvÆ of moths. Mites are much more to be dreaded.

Fig. 72.—Naphthaline cone.

In order to prevent the ravages of insects, all specimens, before putting them away into the boxes or drawers of the cabinet in which they are to be preserved, should be placed in a tight box in which chloroform, or, better, carbon bisulphide, in a small pan is put, and they should be left here for at least twenty-four hours, until it is certain that all life is extinct. Then they should be transferred to the tight boxes or drawers in which they are to be kept. The presence of insect pests in a collection is generally first indicated by fine dust under the specimen, this dust being the excrement of the larva which is committing depredations upon the specimen. In case the presence of the larva is detected, a liberal dose of chloroform should at once be administered to the box or tray in which the specimen is contained. The specimen itself ought to be removed, and may be dipped into benzine. Naphthaline crystals or camphor is generally employed to keep out insect pests from boxes. They are very useful to deter the entrance of pests, but when they have once been introduced into a collection neither naphthaline nor camphor will kill them. Naphthaline is prepared in the form of cones attached to a pin, and these cones may be placed in one corner of the box. They are made by Blake & Co. of Philadelphia, and are in vogue among entomologists. However, a good substitute for the cones may very easily be made by taking the ordinary moth-balls which are sold everywhere. By heating a pin red-hot in the flame of an alcohol-lamp it may be thrust into the moth-ball; as it enters it melts the naphthaline, which immediately afterward cools and holds the pin securely fixed in the moth-ball. In attaching these pins to moth-balls, hold the pin securely in a forceps while heating it in the flame of the lamp, and thrust the red-hot pin into the center of the ball. Naphthaline crystals and camphor may be secured in the corner of the box by tying up a quantity of them in a small piece of netting and pinning the little bag thus made in the corner of the tray. By following these directions insect pests may be kept out of collections. It is proper to observe that while carbon bisulphide is more useful even than chloroform in killing pests, and is also cheaper, it should be used with great care, because when mixed with atmospheric air it is highly explosive, and its use should never take place where there are lamps burning or where there is fire. Besides, its odor is extremely unpleasant, unless it has been washed in mercury.

Greasy Specimens.—Specimens occasionally become greasy. When this happens they may be cleansed by pinning them down on a piece of cork secured to the bottom of a closed vessel, and gently filling it with benzine, refined gasoline, or ether. After leaving them long enough to remove all the grease they may be taken out of the bath and allowed to dry in a place where there is no dust. This operation should not take place near a lighted lamp or a fire.

Mould.—When specimens have become mouldy or mildewed it is best to burn them up if they can be spared. If not, after they have been thoroughly dried remove the mould with a sable or camel's-hair pencil which has been rubbed in carbolic acid (crystals liquefied by heat). Mildew in a cabinet is hard to eradicate, and heat, even to burning, is about the only cure, except the mild use of carbolic acid in the way suggested.

Repairing Specimens.—Torn and ragged specimens are to be preferred to none at all. "The half of a loaf is better than no bread." Until the torn specimen can be replaced by a better, it is always well to retain it in a collection. But it is sometimes possible to repair torn specimens in such a way as to make them more presentable. If an antenna, for instance, has been broken off, it may be replaced neatly, so that only a microscopic examination will disclose the fact that it was once away from the place where it belonged. If a wing has been slit, the rent may be mended so neatly that only a very careful observer can detect the fact. If a piece has been torn out of a wing, it may be replaced by the corresponding portion of the wing of another specimen of the same sex of the same species in such a way as almost to defy detection. The prime requisites for this work are patience, a steady hand, a good eye, a great deal of "gumption," a few setting-needles, a jeweler's forceps, and a little shellac dissolved in alcohol. The shellac used in replacing a missing antenna should be of a thickish consistency; in repairing wings it should be well thinned down with alcohol. In handling broken antennÆ it is best to use a fine sable pencil, which may be moistened very lightly by applying it to the tip of the tongue. With this it is possible to pick up a loose antenna and place it wherever it is desired. Apply the shellac to the torn edges of a broken wing with great delicacy of touch and in very small quantity. Avoid putting on the adhesive material in "gobs and slathers." Repairing is a fine art, which is only learned after some patient experimentation, and is only to be practised when absolutely necessary. The habit of some dealers of patching up broken specimens with parts taken from other species is highly to be reprobated. Such specimens are more or less caricatures of the real thing, and no truly scientific man will admit such scarecrows into his collection, except under dire compulsion.

Fig. 73.—Butterflies pinned into a box overlapping one another, or "shingled."

Packing and Forwarding Specimens.—It often becomes necessary to forward specimens from one place to another. If it is intended to ship specimens which have been mounted upon pins they should be securely pinned in a box lined with cork. A great many expanded specimens may be pinned in a box by resorting to the method known as "shingling," which is illustrated in Fig. 73. By causing the wings of specimens to overlap, as is shown in the figure, a great many can be accommodated in a small space. When the specimens have been packed the box should be securely closed, its edges shut with paper, after some drops of chloroform have been poured into the box, and then this box should be placed in an outer box containing excelsior, hay, cotton, or loose shavings in sufficient abundance to prevent the jarring of the inner box and consequent breakage. Where specimens are forwarded in envelopes, having been collected in the field, and are not pinned, the precaution of surrounding them with packing such as has been described is not necessary, but the box in which they are shipped should always be strong enough to resist breakage. Things forwarded by mail or by express always receive rough treatment, and the writer has lost many fine specimens which have been forwarded to him because the shipper was careless in packing.

Pins.—In the preceding pages frequent reference has been made to insect-pins. These are pins which are made longer and thinner than is the case with ordinary pins, and are therefore adaptable to the special use to which they are put. There are a number of makers whose pins have come into vogue. What are known as Karlsbader and KlÄger pins, made in Germany, are the most widely used. They are made of ordinary pin-metal in various sizes. The Karlsbader pins have very fine points, but, owing to the fineness of the points and the softness of the metal, they are very apt to buckle, or turn up at the points. The KlÄger pins are not exposed to the same objection, as the points are not quite so fine. The best pins, however, which are now made are those which have recently been introduced by Messrs. Kirby, Beard, & Co. of England. They are made of soft steel, lacquered, possessing very great strength and considerable flexibility. The finest-sized pin of this make has as much strength as the largest pin of the other makes that have been mentioned, and the writer has never known them to buckle at the tip, even when pinned through the hardest insect tissues. While these pins are a little more expensive than others, the writer does not fail to give them an unqualified preference.

Fig. 74.—Butterfly-forceps, half-size.

The Forceps.—An instrument which is almost indispensable to the student of entomology is the forceps. There are many forms of forceps, and it is not necessary to speak at length in reference to the various shapes; but for the use of the student of butterflies the forceps made by the firm of Blake & Co. of Philadelphia is to be preferred to all others. The head of this firm is himself a famous entomologist, and he has given us in the forceps which is illustrated in Fig. 74 an instrument which comes as near perfection as the art of the maker of instruments can produce. The small forceps represented in Fig. 75 is very useful in pinning small specimens. In handling mounted specimens it is well always to take hold of the pin below the specimen with the forceps, and insert it into the cork by the pressure of the forceps. If the attempt is made to pin down a specimen with the naked fingers holding the pin by the head, the finger is apt to slip and the specimen to be ruined.

Fig. 75.—Insect-forceps.

IMMORTALITY

A butterfly basked on a baby's grave, Where a lily had chanced to grow: "Why art thou here with thy gaudy dye, When she of the blue and sparkling eye Must sleep in the churchyard low?" Then it lightly soared thro' the sunny air, And spoke from its shining track: "I was a worm till I won my wings, And she, whom thou mourn'st, like a seraph sings; Would'st thou call the blest one back?"

Sigourney.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page