PART I.

Previous

Early History of the Microscope.

The instrument known as the Microscope derives its designation from two Greek words, ????? (mikros), small, and s??p?? (skopeo), to see or observe; and is an optical instrument by means of which objects are so magnified that details invisible or indistinct to the naked eye are clearly seen. Its origin, so far as yet can be traced back, seems to be of a doubtful nature. It is tolerably certain the ancients had little or no conception of the magnifying power of lenses; this may be surmised from their writings. The elder Pliny incidentally states that the physicians of his day cauterised by means of “a globe of crystal.” The learned Greek physician, Galen, however, demonstrates conclusively that in the first and second centuries of our era the use of magnifying lenses was quite unknown either to Greek or Roman. Moreover, the writings of Archimedes, Ptolemy, and other learned men, show that, although they had some idea of the action of refraction at plane surfaces, as of water, yet of the refraction at curved surfaces they had formed no conception. Indeed, they refer quite indiscriminately to the spherical form, or the disc, or the plane surface of the water, but not one of them speaks of the lenticular form, or the curvature of their surfaces.

As to the more powerful optical instruments, the telescope and microscope, although it would appear that Alhazen in the 10th or 11th century, Roger Bacon in the 13th, and Fracastoro and Baptist Porta in the 16th, had formed some idea that lenses might be made and combined so that distant objects might be seen clearer, or near ones magnified beyond the power of normal vision; yet we hold with Kepler, that no instrument analogous to our telescope was known before the early part of the 17th century.

The combination of lenses associated with the name of Galileo, was, he tells us, of Dutch origin, and of a date anterior to that of his telescope, constructed by him in 1609; and this would appear to be the probable origin of the microscope consisting of a combination of a convex object lens with a concave eye lens.3

It now appears almost impossible to assign the exact date of the first production of the microscope (as distinguished from the simple magnifying lens), but those who have made a special investigation, agree that it must have been invented between 1590 and 1609, and that either of the three spectacle-makers of Middelburg, Holland, Hans Janssen, his son Zacharias Janssen, and Hans Lippershey, may have been the inventor, the probabilities being in favour of the Janssens, and there the question must remain.

The history of the modern microscope, like that of nations and arts, has had its brilliant periods, in which it shone with uncommon splendour, and was cultivated with extraordinary ardour; these periods have been succeeded by intervals marked with no discovery, and in which the science seemed to fade away, or at least to lie dormant, till some favourable circumstance—the discovery of a new object, or some new improvement in the instruments of observation—awakened the attention of the curious, and reanimated the spirit of research. Thus, soon after the invention of the microscope, the field it presented to observation was cultivated by men of the first rank in science, and who enriched almost every branch of natural history by the discoveries made by means of this instrument.

The Modern Microscope.

To the celebrated Dr. Hooke belongs the honour of publishing an account of the compound instrument in 1665 in his “Micrographia.” His first claim, however, is founded on the application of a lamp adjustable on a pillar, together with a glass globe of water and a deep plano-convex condensing lens. By means of this arrangement, he says, “The light can be directed more directly on the object under examination.” In the further description given of his microscope, he explains: “It has four draw-tubes for lengthening the body, and a third lens to the optical combination.” This, it would appear, was only brought into use when he wished to see the whole object at once: “The middle-glass lens, conveying a very great company of radiating pencils (of light) which would stray away; but when I had occasion to examine the small parts of a body, I took out the middle glass and made use of one eye-glass with the object-glass.”

From Hooke’s description I gather that he also introduced the ball-and-socket movement into the construction of the body of his instrument. This has found many imitators since his day; some of them have gone so far as to claim the invention as one quite new. For small accessories, where the leverage need not be considered, the ball-and-socket has proved convenient enough; but not, however, if applied to the stand of the microscope. Hooke, in his early work, expressed dissatisfaction with the English-made lenses he had in use. He complains of the “apertures of the object-glasses, which are so small that very few rays are admitted; none will admit a sufficient number of rays to magnifie the object beyond a determinate bigness.” So we may take it that he thus early discovered the great importance of an increase in the aperture of his microscope. Other improvements of importance were made, and he was the first to describe a useful method of estimating the magnifying power of his lenses, and the difficulty of distinguishing between a prominence and a depression in the object under investigation, which he was made more fully aware of when preparing drawings for the illustration of his “Micrographia Illustrata”; this would be in 1664, if not earlier. His book created no little sensation on its first appearance, and it soon became scarce. Hooke (says Mr. Mayall) “must undoubtedly be credited with the first suggestion of immersion lenses.” Nevertheless, in his “Lectures and Collections,” published in 1676, he appears to be no longer enthusiastic over his double microscope, and once more he reverts to the simpler instrument of his earlier days. Whether this change of opinion was due to the publication of Leeuwenhoek’s observations with his simple microscopes it is impossible to say.

As early as 1673 Leeuwenhoek communicated some important discoveries made by a simple microscope of his own construction to the Royal Society; he, however, gave no particulars of the construction of the instrument. Dr. Adams, writing to his friend (Sir) Hans Sloane, says: “They appear to be spherules lodged between two plates of gold or brass, in a hole whose diameter appears to be no bigger than that of a small pin’s head.” At his death he bequeathed to the Royal Society a cabinet containing twenty-six of these microscopes; the cabinet and the microscopes long ago disappeared, but not before they were carefully examined and described by Mr. Henry Baker, F.R.S. In his report to the Royal Society, he says: “They consisted of a series of convex-lenses, ranging in power from 1·20 to 1·5, and magnifying from 160 to 40 diameters.” This must now be regarded as an eventful period in the history of the microscope, since Leeuwenhoek’s discoveries created a great sensation throughout Europe. And all further improvements in compound instruments appear to have been laid aside for some considerable period in consequence: and the pocket instrument of Wilson, together with that of his scroll standard (seen on the cover of this book), and which was one of the first simple microscopes with a mirror mounted on the base in a line with the optic axis.

The discoveries once more made, and at a much later period (1738), by Dr. Nathaniel Lieberkuhn with his simple microscopes, and by means of which he discovered the minute structure of the mucous membrane of the alimentary canal, and which alone would have immortalised his name had we not preserved in use to this day an important adjunct of every modern instrument, the Lieberkuhn reflector.

In the Museum of the Royal College of Surgeons of England, there is a small cabinet of two drawers, containing a set of twelve of his simple microscopes, each being provided with an original injection. The form of the instrument is shown in Figs. 1 and 2. a b represents a piece of brass tubing about an inch long and an inch in diameter and provided with a cap at each extremity. The one at a carries a small double-convex lens of half an inch focal length; while at b there is fixed a condensing lens three-quarters of an inch in diameter. In Fig. 2 the instrument is seen in section, and explains itself. It is held by the handle in such a position that the rays of light, from a lamp or a white cloud, may fall on the condenser b, and concentrate on the speculum l. This again further condenses the rays on the disc c, where the object is held, and its adjustment made by the milled-head screw d, so as to bring it within the focus of the lens a.

Fig. 1.

From this digression I pass on to the evolution of the compound microscope. The earliest workable form known was that designed by Eustachio Divini, who brought it to the notice of the Royal Society in 1668. It consisted of two plano-convex lenses, combined with their convex surfaces retained in apposition. His idea was subsequently improved upon by a London optician. Not long afterwards, Philip Bonnani published an account of his improved compound microscope; and we are certainly indebted to him for two or more forms of the movable horizontal microscopes, and for the compound condenser fitted with focussing gear for illuminating transparent objects by transmitted light. I must, however, pass by the many changes made in the structure and form of the instrument by the celebrated Dr. Culpeper, Scarlet, Cuff, and many other inventors.

Fig. 2.—Lieberkuhn’s Microscope.

Benjamin Martin’s Microscope.—Benjamin Martin, about 1742, was busily engaged in making improvements in the microscope, and I may say he was certainly the first to provide accurate results for determining the exact magnifying power of any object-lens, so that the observer might state the exact amplification in a certain number of diameters. He devised numerous improvements in the mechanism and optical arrangements of the instrument; the rack and pinion focussing adjustments; the inclining movements to the pillar carrying the stage; and the rectangular mechanical motions to the stage itself. He was familiar with the principles of achromatism, since it appears he produced an achromatic objective about 1759, and he is said to have sent an achromatic objective to the Royal Society about that date. But an ingeniously constructed microscope by Martin found its way to George the Third, the grandfather of our Queen, and afterwards came into the possession of the late Professor John Quekett, of the Royal College of Surgeons, who presented it to the Royal Microscopical Society of London. This microscope will ever associate Martin’s name with the earliest and best form of the instrument, even should he not receive full recognition as the inventor of the achromatic microscope. On this account I introduce a carefully made drawing of so singularly perfect a form of the early English microscope to the notice of my readers. (Fig. 3.) The description given of it by the late Professor Quekett is as follows:—“It stands about two feet in height, and is supported on a tripod base, A; the central part of the stem, B, is of triangular figure, having a rack at the back, upon which the stage, O, and frame, D, supporting the mirror, E, are capable of being moved up or down. The compound body, F, is three inches in diameter; it is composed of two tubes, the inner of which contains the eye-piece, and can be raised or depressed by rack and pinion, so as to increase or diminish the magnifying power. At the base of the triangular bar is a cradle joint, G, by which the instrument can be inclined by turning the screw-head, H (connected with an endless screw acting upon a worm-wheel). The arm, I, supporting the compound body, is supplied with a rack and pinion, K, by which it can be moved backwards and forwards, and a joint is placed below it, upon which the body can be turned into the horizontal position; another bar, carrying a stage and mirror, can be attached by a screw, L N, so as to convert it into a horizontal microscope. The stage, O, is provided with all the usual apparatus for clamping objects, and a condenser can be applied to its under surface; the stage itself may be removed, the arm, P, supporting it, turned round on the pivot, C, and another stage of exquisite workmanship placed in its stead, the under surface of which is shown at Q.”

Fig. 3.—Martin’s Universal Microscope. 1782.

This stage is strictly a micrometer one, having rectangular movements and a fine adjustment, the movements being accomplished by the fine-threaded screws, the milled heads of which are graduated. The mirror, E, is a double one, and can be raised or depressed by rack and pinion; it is also capable of removal, and an apparatus for holding large opaque objects, such as minerals, can be substituted for it. The accessory instruments are very numerous, and amongst the more remarkable may be mentioned a tube, M, containing a speculum, which can take the place of the tube, R, and so form a reflecting microscope. The apparatus for holding animalcules or other live objects, which is represented at S, as well as a plate of glass six inches in diameter, with four concave wells ground in it, can be applied to the stage, so that each well may be brought in succession under the magnifying power. The lenses belonging to this microscope are twenty-four in number; they vary in focal length from four inches to one-tenth of an inch; ten of them are supplied with Lieberkuhns. A small arm, capable of carrying single lenses, can be supplied at T, and when turned over, the stage of the instrument becomes a single microscope; there are four lenses suitable for this purpose, their focal length varying from one-tenth to one-fortieth of an inch. The performance of all the lenses is excellent, and no pains appear to have been spared in their construction. There are numerous other pieces of accessory apparatus, all remarkable for the beauty of their workmanship.4

In addition to the movements described by Quekett, the body-tube with its support can be moved in an arc concentrically with the axis of the triangular pillar, on the top of which it is fitted with a worm-wheel and endless-screw mechanism, actuated by the screw-head, T, below. It must therefore be admitted that Martin led the way far beyond his contemporaries, both in the design and the evolution of the microscope. Furthermore, in his “New Elements of Optics,” 1759, he dealt with the principle of achromatism, by the construction of an achromatic telescope.

At a somewhat later period there lived in London a philosophical instrument maker of some repute, George Adams, who published in 1746 a quarto book, entitled “Micrographia Illustrata, or the Knowledge of the Microscope Explained.” This work fairly well describes “the nature, uses, and magnifying powers of microscopes in general, together with full directions how to prepare, apply, examine, and preserve minute objects.” Adams’ book was the first of the kind published in this country, and it contributed in no small degree to the advancement of microscopical science. Adams writes: “We owe the construction of the variable microscope to the ingenuity and generosity of a noble person. The apparatus belonging to it is more convenient, more certain, and more extensive than that of any other at present extant; consequently, the advantage and pleasure attending the observations in viewing objects through it must be as extensive in proportion.” This is believed to apply to Martin’s several microscopes, and that especially constructed for the king, afterwards improved upon by Adams. Another early form of microscope, Wilson Simple Scroll (1746), stamped on the cover of this book, and has thus become familiar to microscopists, was also made by Adams.

We now closely approach a period fertile in the improvement of the microscope, and in the discoveries made by its agency. The chief of those among the honoured names of the time we find Trembley, Ellis, Baker, Adams, Hill, Swammerdam, Lyonet, Needham, and a few others. Adams somewhat sarcastically observes “that every optician exercises his talents in improving (as he calls it) the microscope, in other words, in varying its construction and rendering it different in form from that sold by his neighbour; or at the best rendering it more complex and troublesome to manage.” There were no doubt good reasons for these and other strictures upon inventors as well as makers of microscopes, even in the Adams’ day. In the year 1787 the “Microscopical Essays” of his son were published, in which he described all the instruments in use up to that period.

Looking back, and taking a general survey of the work of nearly two centuries in the history of the microscope, it cannot be said that either in its optical or mechanical construction any great amount of progress was made. This in part may have arisen from the fact that no pressing need was felt for either delicate focussing or higher magnification. At all events, it was not until the application of achromatism to the instrument that new life was infused into its use, and a great impetus was given to its development, both optically and mechanically.

In the year 1823 a strong desire became manifest for improved forms of the instrument, in France by M. Selligue, by Frauenhofer in Munich, by Amici in Modena, by M. Chevalier in Paris, and by Dr. Goring, Mr. Pritchard, and Mr. Tully in London. The result was that in 1824 a new form of achromatic object-glass was constructed of nine-tenths of an inch focal length, composed of three lenses, and transmitting a pencil of eighteen degrees; and which, as regards accurate correction throughout the field, was for some years regarded as perfect.

Sir David Brewster was the first to suggest the great importance of introducing materials of a more highly refracting nature into the construction of lenses. He wrote: “There can be no essential improvement expected in the microscope unless from the discovery of some transparent substance which, like the diamond, combines a high refractive with a low dispersive power.” Having experienced the greatest difficulty in getting a small diamond cut into a prism in London, he did not conceive it practicable to grind, polish, and form it into a lens.

Mr. Pritchard, however, was led to make the experiment, and on the 1st of December, 1824, “he had the pleasure of first looking through a diamond microscope.” Dr. Goring also tried its performance on various objects, both as a single microscope and as an objective of a compound instrument, and satisfied himself of its superiority over other kinds of lenses. But here Mr. Pritchard’s labours did not end. He subsequently found that the diamond used had many flaws in it, which led him to abandon the idea of finishing it. Having been prevented from resuming his operations on this refractory material for a time he made a third attempt, and met with another unexpected defect; he found that some lenses, unlike the first, gave a double or triple image instead of a single one, in consequence of some of their parts being either harder or softer than others. These defects were found to be due to polarisation. Mr. Pritchard having learned how to decide whether a diamond is fit for a magnifier or not, subsequently succeeded in making two planoconvex lenses of adamant; these proved to be perfect for microscopic purposes. “One of these, of one-twentieth of an inch in focal length, is now in the possession of his Grace the Duke of Buckingham; the other, of one-thirtieth of an inch focus, is in his own hands.”

“In consequence of the high refracting power of a diamond lens over a glass lens, the former material may be at least one-third as thin as that of the latter, and if the focal length of both be equal, say, one-eightieth of an inch, the magnifying power of the diamond lens will be 2,133 diameters, whereas that of glass will be only 800.” At a date (1812) before Brewster proposed diamond lenses he demonstrated a simple method of rendering both single and compound microscopes achromatic. “Starting,” he says, “with the principle that all objects, however delicate, are best seen when immersed in fluid, he placed an object on a slip of glass, and put above a drop of oil, having a greater dispersive power than the single concave lens, which formed the object-glass of the microscope. The lens was then made to touch the fluid, so that the surface of the fluid was formed into a concave lens, and if the radius of the outward surface was such as to correct the dispersion, we should have a perfect achromatic microscope.” Here we have the immersion system foreshadowed. Shortly after these experiments of Brewster’s were in progress, Dr. Goring is said to have discovered that the structure of certain bodies could be readily seen in some microscopes and not in others. These bodies he named test objects. He then examined these tests with the achromatic combinations of the Tullys, and was led to the discovery that “the penetrating power of the microscope depends upon its angle of aperture.”

“While these practical investigations were in progress,” writes Andrew Ross, “the subject of achromatism engaged the attention of some of the most profound mathematicians in England, Sir John Herschel, and Professors Airy and Barlow. Mr. Coddington and others contributed largely to the theoretical examination of the subject; and although the results of their labours were not applicable to the microscope, they essentially promoted its improvement.”

About this period (1812) Professor Amici, of Modena, was experimentally engaged in the improvement of the achromatic object-glass, and he invented a reflecting microscope superior to those of Newton, Baker, or Smith, made as early as 1738, and long ago abandoned. In 1815 Amici made further experiments, and introduced the immersion system; while Frauenhofer, of Munich, about the same time constructed object-glasses for the microscope of a single achromatic lens, in which the two glasses, although placed in juxtaposition, were not cemented together.

Dolland, it has been said, introduced achromatic lenses; but although he constructed many achromatic telescopes, he did not apply the same principle to microscopes, and those which he sold were only modifications of the compound microscope of Cuff.

Dr. Wollaston employed a new form of combination in a microscope constructed for his own use, and by which “he was able to see distinctly the finest markings upon the scales of the Lepisma and Podura, and upon those of the gnat’s wing.” His doublet is still employed, and to which I shall refer under “Simple Microscopes.”

Fig. 3a.—Sir David Brewster’s Microscope, of the early part of the century, recently presented to the British Museum.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page