Figure 12.—Original 6-cylinder engine: a, push-rod side; b, valve-port side; c, crankcase with sump removed. (Photos: Smithsonian A-3773A, 45598; Pratt & Whitney D-15015, respectively.) Shortly after the construction of the 8-cylinder engine the Wrights were again faced with the ever-recurrent problem of providing a higher powered standard production engine for their airplanes, which were now being produced in some numbers. By this time, 1911, there had been a relatively tremendous growth in both flying and automotive use of the internal combustion engine and as a result many kinds and sizes had been produced and utilized, so that numerous choices were presented to them. But if they The 4-in. cylinder in combination with a 5-in. stroke would provide in four cylinders about the displacement they wanted. Strokes of 6 in. were not uncommon and cylinders of 6-in. bore had been very successfully utilized in high-output automobile racing engines many years before this, so there was seemingly no reason to doubt that the 5-in. cylinder could be made to operate satisfactorily, but it is not difficult to imagine the Wrights' thoughts concerning the roughness of an engine with cylinders of this diameter. The question of the grade of available fuel may possibly have entered into their decision to some extent, but it seems far more likely that roughness, their perennial concern, was the predominant reason for not staying with the more simple 4-cylinder form (as we have seen, roughness to them meant the effect of the cylinder explosion forces). Actually, of course, they never went larger than a 4-3/8-in. cylinder bore, and later aircraft engine experience would seem generally to confirm their judgment, for with the piston engine it has always been much more difficult to make the larger bores operate satisfactorily at any given specific output. While the 90°V, 8-cylinder arrangement would have enabled them to utilize a great number of the 4-cylinder-engine parts, it would have given them a somewhat larger engine than was their apparent desire, unless they reduced the cylinder size. And while they had had some limited experience in building and operating this kind of engine, and twice had chosen it when seeking more power, both of these choices were greatly influenced by the desire to obtain quickly an engine of higher power. It is also possible that something in their experience with the V-8 moved them away from it; the unbalanced shaking force inherent in the arrangement may well have become evident to them. What probably also helped them to their final conclusion was the fundamental consideration that the V-8 provided two extra cylinders which were not really needed. The eventual selection of the 6-cylinder was a slight compromise. In order to get the desired output the cylinder displacement was increased, but this was done by lengthening the stroke—the first time this had been altered since the original design. The increase (from 4 to 4-1/2 in.) was only 1/2 in., and the bore, the more important influence on fuel performance, was kept the same. Overall, the choice was quite logical. They were utilizing the in-line construction upon which almost all of their now considerable experience had been based, and the sizes of and requirements for parts also conformed to this experience. They could, in fact, use many In the literature are two references to a Wright 6-cylinder engine constructed around the cylinders of the vertical 4. One of these is in Angle's Airplane Engine Encyclopedia, published in 1921, and the other is in Aerosphere 1939, published in 1940. The wording of the latter is essentially identical with that of the former; it seems a reasonable conclusion that it is a copy. Although it is possible that such an engine was built at some time, just as the 8-cylinder racing engine was cobbled up out of parts from the 4-cylinder vertical, no other record, no engines, and no illustrations have been found. It is thus quite certain that no significant quantity was ever manufactured or utilized. The crankcase was considerably changed from that of the vertical 4, and was now in two pieces, with the split on the crankshaft center line. However, the shaft was not supported by the lower half of the case, as eventually became standard practice, but by bearing caps bolted to the ends of the upper case and, in between, to heavy ribs running across the upper case between the cylinders. The lower half of the case thus received none of the dynamic or explosion loads, and, serving only to support the engine and to provide for its mounting, was lightly ribbed. In it were incorporated integral-boss standpipe oil drains which discharged into a bolted-on sump. The upper half of the case was again left open on one side, giving the desired access to the interior, and, additionally, the design was altered to provide a method of camshaft assembly that was much simpler than that of the vertical 4 (see p. 42). The cylinder was also greatly altered from that of the vertical 4. It was made in three parts, a piece of seamless steel tubing being shrunk on a cast-iron barrel to form the water jacket, with a cast-iron cylinder head shrunk on the upper end of the barrel. This construction compelled the use of long studs running from the cylinder head to the case for fastening down the cylinder (see Figures 12a-c). For the first time the cylinder heads were water-cooled, cored passages being provided, and more barrel surface was jacketed than previously, although a considerable area at the bottom was still left uncooled, obviously by direct intent, as the ported exhaust arrangement was no longer employed. Also for the first time one-piece forged valves were used, but just when these were incorporated is not certain and, surprisingly, they were applied to the inlet only, the exhaust valve being continued in the previous two-piece screwed and riveted construction. The reasoning behind this is not evident. If a satisfactory two-piece exhaust valve had finally been developed it Design of the piston followed their previous practice, with wide rings above the pin and shallow grooves below the pin on the thrust face, and with the pin fastened in the piston by a set screw. The piston had four ribs underneath the head (see Figure 13b) radiating from the center and with the two over the pin bosses incorporating strengthening webs running down and joining the bosses. The piston length was reduced by 1 in., thus giving a much less clumsy appearance and, with other minor alterations, a weight saving of 40 percent (see Figures 13b and c). The rods were for the first time made of I-section forgings, a major departure, machined on the sides and hand finished at the ends, with a babbit lining in the big end, the piston pin bearing remaining steel on steel. Figure 13.—Original 6-cylinder engine: a, cylinder assembly and valve parts; b, bottom side of piston; c, piston, piston pin and connecting rod; d, valve mechanism; e, crankshaft and flywheel. (Pratt & Whitney photos D-15012, 15017, 15013, 15018, respectively.) At least two different general carburetion and induction systems were utilized, possibly three. One, and most probably the original, consisted of a duplicate of the injection pump of the 4-cylinder fitted to a manifold which ran the length of the engine, with three takeoffs, each of which then split into two, one for each cylinder. Of this arrangement they tried at least two variations involving changes in the location and method of injecting the fuel into the manifold; and there seems to have been an intermediate manifold arrangement, using fuel-pump injection at the middle of the straight side, or gallery, manifold, which was fed additional air at both ends through short auxiliary inlet pipes. This would indicate that with the original arrangement, the end cylinders were receiving too rich a mixture, when the fuel in the manifold was not properly vaporized. Although the exhaust was on the same side of the engine as the inlet system, no attempt was made to heat the incoming charge at any point in its travel. An entirely different system adopted at the time of the complete redesign in 1913 consisted of two float-feed Zenith carburetors each feeding a conventional The compression ratio of this engine was lowered by almost 20 percent from that of the vertical 4. This, in combination with the low bore-to-stroke ratio, the unheated charge, and the later mechanically operated inlet valve, indicates that the Wrights were now attempting for the first time to secure from an engine something approaching the maximum output of which it was capable. As the engine originally came out, it continued to utilize only one spark plug in each cylinder. The high-tension magneto had a wide range of spark advance adjustment, which again provided the only control of the engine when equipped with the original fuel pump injection. The location of the valves and pushrods was similar to that in the 4, so that the cams were immediately adjacent to the camshaft bearings, which were carried in the crankcase ends and in the heavy webs. The camshaft was gear-driven and the cam shape was similar to that of the last 4s, with a quite rapid opening and closing and a long dwell, leaving the valve opening accelerations and seating velocities still quite high. The crankshaft was a continuation of their basic design of rather light construction, particularly in the webs. The cheeks were even thinner (by 1/4 in.) than those of the 4 although the width was increased by 1/8 in. (see Figure 13e). For the first time they went to a forging, the rough contour type of the time, and utilized a chrome-nickel alloy steel. Lubrication was by means of the usual gear pump, and the piston and rod bearings continued to be splash-fed. The rod big-end bearing carried a small sharp undrilled boss at the point where, on the other engines, had been located scuppers whose purpose was apparently still to throw lubricating oil on the cylinder wall carrying the more highly loaded side of the piston. The rod big-end bearing was lubricated by a hole on the top of the big-end boss catching some of the crankcase splash, which was then carried to the bearing by a groove. When the 6-cylinder engine was completely redesigned in 1913 this led to the introduction in late fall of that year of a new model called the 6-60, the 60 designating the rating in horsepower. There is little in the Wright records to show why such a radical revision was thought necessary, but the general history of the period gives a rather clear indication. The competition Most of the descriptions of the new model published at the time it was introduced concentrate on the addition of the two carburetors and the mechanical operation of the inlet valves, but these were only two of many major changes. The cylinder was completely revised, the intake being moved to the camshaft side of the engine from its position adjacent to the exhaust, so that the two ports were now on opposite sides of the cylinder. By proper positioning of the rocker-arm supports and choice of their length and angles, all valves were made operable from a single camshaft. The shrunk-on steel water jacket cylinder was retained, but the water connections were repositioned so that the water entered at the bottom and came out at the top of the cylinder. Over the life of the 6-cylinder engine several different valve types were used but the published specifications for the model 6-60 called for "cast iron heads"—the old two-piece construction. The piston pins were case hardened and ground and the crankshaft pins and journals were heat treated and ground. The fuel and oil pumps were removed from the side of the crankcase and a different ignition system was applied, although still of the high-tension spark-plug type which by this time had become general practice on all so-called high-speed internal-combustion engines. A second threaded spark-plug hole was provided in the cylinder head and despite its more common use for other purposes, it is evident that the intention was to provide two-plug ignition. It is doubtful that at the specific output of this engine any power difference would be found between one-and two-plug operation, so that the objective was clearly to provide a reserve unit in case of plug failure. However, it was also used for the installation of a priming cock for starting and because of the prevalence of single-wire ignition systems on existing and illustrated engines, it seems to have been used mostly in this manner, even though dual-ignition systems later became an unvarying standard for aircraft engines. Viewed externally, the only part of the engine that appears the same as the original 6 is the small lower portion of the crankcase; but what is more visually striking is the beauty of the new lines and extreme cleanness of the exterior design (see Figures 14 and 15). Many of their individual parts had shown the beauty of the sparse design of pure utility but it was now in evidence in the whole. Despite the proven practical value of their other models, this is the only one that can be called a good-looking engine, instantly appealing to the aesthetic sense, even though the vertical 4 is not an ugly engine. The appearance of their final effort, in a field they were originally reluctant to enter and concerning which they always deprecated The 6-60 was continued in production and development until it became the 6-70, and indications are that it eventually approached an output of 80 horsepower. Figure 14.—6-Cylinder 6-60 and 6-70 engine, right rear intake side. (Pratt & Whitney photo.) Figure 15.—6-Cylinder 6-70 engine, incorporating flexible flywheel drive, exhaust side. (Smithsonian photo A-54381.) |