THE QUICK DETERMINATION OF THE COMMON MINERALS Before one may gain a knowledge of rocks or the architecture of their arrangement within the earth’s crust, it is quite essential that some familiarity should be acquired with the appearance and properties of the commonest minerals, and particularly those which enter as essential constituents into the more abundant rocks. To be a competent mineralogist, one must have a rather extended knowledge both of inorganic chemistry and of the science of crystallography, which, fascinating as it is to study, involves some technical knowledge of mathematics and much laboratory experience. Though necessary to any one who contemplates making a career as a geologist, this special study is not essential to a cultural course like the present one. The attempt will here be made to bring together a body of fact, from the study of which the student may quickly learn to recognize the commonest minerals in their usual varieties. The tests he is to apply are mainly physical, and in place of an elaborate discussion of crystal symmetry, pictures only can be supplied. To the beginner the usual textbook of mineralogy is difficult to read intelligently, for the reason that for each mineral species it sets before him a catalogue of each physical property in its turn, with little indication of those data which in the individual case have special diagnostic value. None the less, however, the student is advised to consider the several properties of each mineral in a definite order, and the following may serve as well as any: crystal or other form, cleavage, fracture, luster, color, streak, transparency, tenacity, hardness, magnetism, and specific gravity. In endeavoring to connect the specific values of these properties with individual mineral species, the chemical composition and the manner of occurrence are not to be forgotten. It is well for the student to be supplied with a small pocket lens and with a pocket knife the blade of which has been magnetized. Crystal form.—Some mineral species generally occur in more or less definite crystals—are bounded by definite plane surfaces developed when the mineral was formed; others in groups of interfering crystals or aggregates, in which case the mineral is said to be crystalline; while still others are rarely found crystallized at all. Thus in a given case crystal form may, or may not, be important for the diagnosis of the substance. If Cleavage.—It is characteristic of most crystals that they break or cleave along certain directions so as to leave plane or nearly plane surfaces, and the luster of the cleaved surface measures the perfection of the cleavage property. It is important always to note how many such directions of cleavage are present, and, roughly at least, at what angles they intersect—whether they are perpendicular to each other or inclined at some other angle. Further, it should be noted whether a given cleavage is perfect, that is, easy, which will be indicated by the thinness of the plates which can be secured. An extremely perfect cleavage is possessed by the mineral mica, whose plates are thinner than the thinnest paper. In the case of imperfect or interrupted cleavage, the fracture surfaces are not plane throughout, but interrupted, the surface “jumping” from one plane to a neighboring parallel one. It is especially important to note whether, in the case of several cleavages possessed by a crystal, all have the same degree of perfection, or whether they exhibit differences. Fracture.—In minerals with poorly developed cleavage, the fracture surface is described as fracture. Fracture is thus perfect in proportion as cleavage is imperfect. The fracture is described as conchoidal when it shows waving spherical surfaces like broken glass. For fine aggregates the fracture is described as even, uneven, earthy, etc., names which are generally intelligible. Luster.—This term is applied especially to the manner in which light is reflected from mineral surfaces. The most important distinction is made between those minerals which have a metallic luster and those which have not, the former being always opaque. Other characteristic lusters are adamantine (like oiled glass), vitreous (glassy), resinous, waxy, etc. Color.—For minerals which possess metallic luster the color is always practically the same, and hence it becomes a valuable diagnostic property. Of minerals which have nonmetallic luster, the color may be always Streak.—This term is applied to the color of the mineral powder, and is usually fairly constant, even when the surface color of different specimens may vary within wide limits. In the case of fairly soft minerals the streak is best examined by making a mark on a piece of unglazed porcelain (streak stone). Transparency (diaphaneity).—The terms “transparent”, “translucent”, “subtranslucent”, and “opaque” are used to describe decreasing grades of permeability by light rays. Through transparent bodies print may be read, while translucent bodies allow the light to be transmitted in considerable quantity through them, though without rendering the image of objects. Tenacity.—This comprehensive term includes such properties as brittleness, flexibility, elasticity, malleability, etc. Hardness.—Quite erroneous notions are held concerning the meaning of this very common word, which properly implies a resistance offered to abrasion. It is one of the most valuable properties for the quick determination of minerals, since minerals range from diamond upon the one hand—the hardest of substances—to talc and graphite, which are so soft as to be deeply scratched by the thumb nail. For practical purposes it is sufficient to make use of a rough scale of hardness made up from common or well-known minerals. If we exclude the gem minerals, this scale need include but seven numbers, which are: talc, 1; gypsum, 2; calcite, 3; fluor spar, 4; apatite, 5; feldspar, 6; and quartz, 7. A given mineral is softer than a mineral in the scale when it can be visibly scratched by a scale mineral, but will not leave a scratch when the conditions are reversed. If each will scratch the other with equal readiness, the two minerals have the same hardness. Since it may often be desirable to test mineral hardness when no scale is at hand, the following substitutes may be made use of: 1, greasy feel and easily scratched by the thumb nail; 2, takes a scratch from the thumb nail, but much less readily; 3, scratched by a copper coin and very easily by a pocket knife; 4, scratched without difficulty by a knife; 5, scratched with difficulty by a knife, but easily by window glass; 6, scratched by window glass; 7, scratches window glass with readiness, but a grain of sand may be substituted to represent quartz in the scale. Magnetism.—Though nearly all minerals which contain important quantities of the elements iron, cobalt, or nickel may be attracted to a strong electromagnet, there are but two common minerals, and these Specific gravity.—Rough tests of relative weight, or specific gravity, may be made by lifting fair-sized specimens in the hand. Better determinations require the use of a spring balance. Treatment with acid.—The carbonate minerals react with warm and dilute mineral acid so as to give a boiling effect (effervescence), since carbonic acid gas escapes into the air in the process. PROPERTIES OF THE COMMON MINERALS The more important common minerals fall into two classes according as they have large economic importance as ores, or enter in an important way into the composition of rocks. I. The Minerals of Economic ImportanceHematite.—The sesquioxide of iron, Fe2O3, and by far the most important ore of iron. Rarely in good crystals, but sometimes in thin opaque scales bearing some resemblance to mica and known as micaceous or specular iron ore. At other times in nodules built up from radial needles (needle ore); in hard masses mixed with fine quartz grains (hard hematite); or in soft reddish brown earth (soft hematite). Color, black to cherry red. The powdered mineral always cherry red or reddish brown, and easily lifted by the magnet after ignition. Hardness 5.5-6.5; specific gravity 5. Magnetite.—The magnetic oxide of iron, Fe3O4, often in crystals like Fig. 486, 1-2. Black and opaque with a metallic luster. Streak black. Lifted by a magnet and sometimes itself capable of lifting filings of soft iron (lodestone). Hardness 5.5-6.5. Specific gravity 5. Limonite.—The most abundant and most valuable of the hydrated iron ores, 2 Fe2O3. 3 H2O. Chemical composition the same as iron rust, with which in the earthy form it is identical. Never in crystals, but often in mammillary or rounded pendant forms resembling icicles, or sometimes clusters of grapes. Its yellow (rust) streak is its best diagnostic property. Ignited it gives off water and becomes magnetic. The streak and its notably lower specific gravity distinguish it from certain forms of hematite which it outwardly resembles. Hardness 5-5.5. Specific gravity 3.6-4. Pyrite, iron pyrites, or “fool’s gold.”—The sulphide of iron, FeS2. The most widely distributed sulphide mineral and now a chief source of Chalcopyrite, copper pyrites.—A mixed sulphide of copper and iron. If in crystals, like Fig. 486, 6; otherwise massive or compact. Luster metallic. Color orange-yellow, often with local blue and green iridescence like a pigeon’s throat. Distinguished from pyrite by the deeper color and lower hardness, and from gold, particularly, by its brittleness and lower specific gravity. Hardness 3.5-4. Specific gravity 4. Galenite, galena.—Sulphide of lead, PbS. The chief ore of lead, and, from admixture of a silver mineral, of silver as well. Usually found in crystals (Fig. 486, 7). Always cleaves into blocks bounded by six very perfect rectangular faces which, when freshly broken, show a bright silvery luster and quickly tarnish to a peculiarly “leaden” surface. Very heavy. Color and streak lead-gray. Hardness 2.5. Specific gravity 7.5. Sphalerite, zinc blende.—Sulphide of zinc, ZnS, usually with considerable admixture of sulphide of iron. The great ore of zinc. Not infrequently in crystals (Fig. 486, 8-9), but more often in cleavable crystalline aggregates. The cleavage in fine aggregates is sometimes difficult to make out, but in coarse-grained masses it is seen to be equally and highly perfect in six different directions, so that a symmetrical twelve-faced form may sometimes be broken out (dodecahedron). Luster like that of rosin (rosin jack), though when with large iron admixture the color may approach black (black jack). The lighter colored varieties are translucent. Hardness 3.5-4. Specific gravity 4. Malachite.—Hydrated (basic) copper carbonate. The green copper ore and the common surface alteration product of other copper minerals. Usually has a microscopic structure made up of fine needle-like crystals, but generally massive in various imitative shapes not unlike those of the iron ores. Sometimes earthy. Its color is bright green, and it is usually found in association with other characteristic copper ores, such as chalcopyrite and azurite. When relatively pure and in large masses, it is a beautiful ornamental stone. Effervesces with acid. Hardness 3.5-4. Specific gravity 4. Azurite.—Hydrated (basic) copper carbonate, less hydrated than malachite, and known as the blue carbonate of copper. Generally in very minute and quite complex crystals, but also in imitative shapes similar to those of malachite, and at other times earthy. Slightly lighter in weight than malachite, from which it is easily distinguished, as from most other minerals, by its bright azure blue color and its somewhat lighter blue streak. Effervesces with nitric acid. Hardness 3.5-4. Specific gravity 3.7-3.8. Calcite.—Calcium carbonate, CaCO3. Almost always in crystals (Fig. 486, 10-13), or in confused crystal aggregates, though rarely fibrous or dull and earthy. Some of the forms of the crystals are described as “dog-tooth spar”, others as “nail-head spar”, while still others are modified hexagonal prisms. There is a beautifully perfect cleavage of the mineral along three directions which make angles of about 105° with each other, so that under the hammer the substance breaks into blocks which are shaped like the crystal of Fig. 486, 10. Usually white or gray, but occasionally faintly tinted. Streak white. Effervesces with cold and dilute mineral acids. An associate of many ores and the chief mineral of limestone. A similar mineral—dolomite—contains in addition magnesium carbonate, has simpler crystals (like the drawing of Fig. 486, 10, but often with rounded faces), and effervesces only when the acid is warmed. Hardness 3. Specific gravity 2.7. Gypsum.—Hydrated calcium sulphate, CaSO4.2 H2O, and the source of plaster of Paris. Often in simple crystals (Fig. 487, 1) or else “swallow tail”, like Fig. 487, 2; in which case the mineral is generally either transparent or translucent and is described as selenite. Such crystals show a cleavage approaching in perfection that of the micas, but, unlike the mica laminÆ, those produced by cleavage in gypsum though flexible are not elastic. There are also fibrous forms of gypsum (satin spar), a fine-grained form (alabaster), and the impure earthy form (rock gypsum). Very soft, light in weight, and difficultly fusible. Color usually white, gray, or pale yellow. Hardness 2. Specific gravity 2.3. Copper glance.—A sulphide of copper, Cu2S. Not usually well crystallized, but generally massive and associated or variously admixed with other copper ores such as chalcopyrite, malachite, etc. Fracture conchoidal, luster metallic, color and streak blackish lead-gray, though often tarnished blue or green from surface alterations to the copper carbonates. Softer and heavier than chalcopyrite. Blowpipe or chemical tests are necessary for its identification. Hardness 2.5-3. Specific gravity 5.5-5.8. Cerussite.—The white or carbonate lead ore, PbCO3, and an important ore of silver as well. Often in crystals of considerable complexity, though Fig. 487, 3-4, shows some common shapes. Often granular, massive, or earthy (gray carbonate ore). Very brittle and with conchoidal fracture. The luster is adamantine or like that of oiled glass. Color generally Siderite.—The carbonate or “spathic” ore of iron, FeCO3. Either in crystals resembling in form Fig. 486, 10, but with rounded faces, or cleavable massive to finely granular and earthy. The crystalline varieties cleave easily into smaller blocks of the same form as those of calcite. Color usually gray or brown and streak white. On strongly igniting, the white powder becomes black and magnetic. Lighter in both color and weight than the other iron ores, and unlike them siderite effervesces with acid. Distinguished from calcite by its higher specific gravity and its change upon being ignited. Hardness 3.5-4. Specific gravity 3.9. Smithsonite.—Carbonate of zinc, ZnCO3, and an important ore of that metal. Seldom found in crystals except as a replacement of calcite crystals, in which case it shows the forms characteristic of the latter mineral. Usually kidney-shaped, stalactitic, or else in incrustations upon other minerals. Sometimes granular or earthy. Brittle. Luster vitreous, color white or greenish gray, though often stained yellow with iron rust. Streak white except when the mineral is stained with iron. Effervesces with warm acid. Hardness 5. Specific gravity 4.4. Pyrolusite.—Black oxide of manganese, MnO2, though generally impure from admixture with other manganese oxides. Usually in intricate aggregates which may be columnar, fibrous, mammillary, earthy, etc. Opaque, with color and streak both black. Soft and easily soils the fingers. With hydrochloric acid gives off the choking fumes of chlorine. Hardness 2-2.5. Specific gravity 4.8. II. The Minerals important as Rock MakersThese minerals are in most cases complex silicates of one or more of a certain number of metals such as aluminium, calcium, magnesium, iron, sodium, potassium, or hydroxyl (OH). For their identification an examination of the physical properties is usually sufficient, whereas of the typical ore minerals already considered, additional chemical tests may be necessary. Feldspars.—A group of similar alumino-silicates of potassium, sodium, and calcium. The most important of all rock-making minerals. Although with wide variation in chemical composition, the feldspars are yet broadly divided into two classes; the one striated, and the other an unstriated potash or orthoclase variety. The pocket lens is usually necessary in order to make out the striations upon the crystal or cleavage surfaces. When formed in veins, feldspar appears in crystals (Fig. 487, 5-6), but as a rock constituent the mutual interference of crystals prevents the development of bounding faces. Two cleavage directions, nearly or quite perpendicular to each other, are notably different in their perfection. Hard enough to scratch glass, but easily scratched by sand. Color pink (usually orthoclase or microline), white (often albite) to gray. Sometimes with beautiful “pigeon’s throat” effect of iridescence (labradorite). Low specific gravity. Hardness 6. Specific gravity 2.5-2.8. Quartz.—Oxide of silicon or silica, SiO2. Both an important vein mineral associated with the ores and a rock maker. In the former case particularly, often in crystals of notably simple forms (Fig. 487, 7). Few minerals which are not gems are so hard. Remarkable freedom from cleavage so that the mineral breaks much like window glass—conchoidal fracture. Wide range in both transparency and color. Transparent and colorless crystalline variety (rock crystal), brown translucent (smoky quartz), turbid white (milky quartz), and various colored varieties (carnelian, jasper, jet, etc.). Insoluble in acids and infusible. Hardness 7. Specific gravity 2.6. Micas.—Like the feldspars a group of complex silicates, but here chiefly of potassium, magnesium, iron, and hydroxyl. Abundant as rock makers, the micas are all characterized by the thinnest and toughest of elastic cleavage plates, such as are generally known as isinglass. When a needle is driven sharply through a thin scale of mica, a six-rayed puncture star forms about the needle point. The darker common variety of mica is rich in iron and magnesium and is called biotite, and the lighter colored alkaline variety, muscovite. Hardness 2.5-3.1. Specific gravity 2.7-3.1. Chlorite.—Generally an intricate mixture of more or less similar microscopic crystals having varying and rather complex chemical compositions and related to the micas, but all characterized by a peculiar leaf green color. These minerals are a common product of hydration weathering in rocks which are rich in magnesium and iron—especially those that contain biotite, pyroxene, or hornblende (see below). Hardness 1-2.5. Specific gravity 2.5-3. Pyroxenes.—An important group of related rock-making minerals all of which are silicates of the bases magnesium, calcium, aluminium, iron, and manganese. Quite generally developed either in columnar or needle-like crystals which are uniformly shaped in cross section like Fig. 487, 8. Two rather imperfect cleavages are directed parallel to the longer axis of the crystal and nearly at right angles to each other. The colors of all but the lime varieties are dark and generally green, dark brown, bronze, or black. The lime varieties are white, gray, or pale green. A dark colored and common iron variety is known as augite. Streak generally either white or lightly tinted. Hardness 5-6. Specific gravity 3.2-3.6. Amphiboles.—A group of minerals of the same chemical composition as the pyroxenes, with which also in most physical properties they agree. The principal distinction is found in the shape of the cross section and in the cleavage (Fig. 487, 9). Whereas the cross sections of pyroxenes are generally eight sided, those of the amphiboles have six sides, and whereas the cleavage directions of pyroxenes are nearly at right angles to each other (87°), the similar but much more perfect cleavage directions of the amphiboles are inclined at an obtuse angle (124½°). Owing to the obliquity of the amphibole cleavage, fractured surfaces of the mineral appear splintery, which is not in the same measure true of the pyroxenes. A fibrous variety of amphibole, and occasionally other varieties of the mineral, is a not uncommon product of weathering of pyroxenes. Other physical properties of the amphiboles are in the main almost identical with those of the pyroxenes. Garnet.—Complex alumino-silicates or ferro-silicates of calcium, magnesium, iron, or manganese, or several of these combined. Nearly always in crystals, and usually found in mica schist (see below). The crystals usually have twelve similar faces, each a lozenge (dodecahedron), or else twenty-four similar faces, or the two forms combined (Fig. 487, 10). Brittle. From any but the gem minerals garnet is easily distinguished by its hardness, which in different varieties ranges from somewhat below to somewhat above that of quartz. The luster is vitreous, and the color runs the gamut of reds, browns, and greens, but with the common hue dark red to black. Streak white. Hardness 6.5-7.5. Specific gravity 3.1-4.3. Nephelite (nephelene).—An alumino-silicate of sodium and potassium. In certain special provinces this mineral is developed in abundance as an essential constituent of igneous rocks, but elsewhere practically unknown. The rare crystals are hexagonal prisms (Fig. 487, 11), but the mineral is most easily determined by its general resemblance to feldspar, but with the differences of cleavage, luster, and reaction with acid. Whereas the feldspars have two cleavages, either nearly or quite perpendicular to each other and of different degrees of perfection, nephelite has three equal cleavages inclined 60° and 120° to each other and of less perfection than either feldspar cleavage. The luster of nephelite is perhaps the best clew to its identity, since this is greasy and simulated by but few minerals. The fine powder of the mineral treated for some time with strong hydrochloric acid forms a perfect jelly of silicic acid, whereas the feldspars do not. Though itself gray or white and unobtrusive, nephelite is usually associated with brightly colored minerals, which are often the first clew to its presence in a rock. Hardness 5.5-6. Specific gravity 2.5-2.6. Talc (soapstone).—A silicate of magnesium and hydroxyl which is an important alteration product through weathering of certain pyroxene rocks especially. Usually a foliated mass, this product is occasionally fibrous or even granular. Talc is one of the softest of minerals, having a greasy feel and being easily scratched with the thumb nail. The luster of the foliated varieties is apt to be pearly, and the color apple-green to white, though sometimes stained brown from oxide of iron. The streak of the mineral is white except when stained by iron. Although the rocks which are composed mainly of talc (soapstone) are exceedingly soft, they are very tough and remarkably resistant. Hardness 1-1.5. Specific gravity 2.7-2.8. Serpentine.—Like talc, serpentine is a silicate of magnesium and hydroxyl, and an important product of the breaking down of magnesium minerals in the process of weathering. The mineral is usually found as a fine web of microscopic needle-like fibers, and is best roughly diagnosed by its color and its associated minerals. Like talc it is usually developed within those igneous rocks from which feldspar is lacking, but where either pyroxene or olivine is found in abundance or was previous to alteration. The characteristic color of serpentine is leek-green. The rock largely composed of serpentine is called by the same name, and being exceedingly tough and unchanging is, in spite of its softness, a valuable building and ornamental stone. A red magnesium garnet is apt to be associated with such serpentine masses. Hardness 2.5-4, because of impurities. Specific gravity 2.5-2.6. Staurolite.—A silicate of aluminium, iron, and hydroxyl. Found in metamorphic rocks usually in association with garnet. Always in crystals bounded by simple forms generally crossed, as shown in Fig. 487, 12-14. The color is dark reddish brown, and the streak is colorless to grayish. The hardness is exceptional and higher than that of quartz. Hardness 7-7.5. Specific gravity 3.6-3.7. Tourmaline.—An exceptionally complex silicate of boron and aluminium as well as iron, magnesium, and the alkalies. Found in metamorphic rocks and always crystallized. The crystals are columns or needles whose cross section is the best guide to their identity, since this is a modified triangle unlike that of any other mineral (Fig. 487, 15-16). Additional diagnostic properties are the characteristic striations which run lengthwise of the crystals upon prism faces, and the lack of any cleavage (difference from hornblende). The hardness is also a valuable property, since this is greater than that of quartz. The mineral is brittle and the fracture subconchoidal. The range in color is as great as, or greater than, that of garnet, though the common forms are jet black. Streak uncolored. Hardness 7-7.5. Specific gravity 3-3.2. Olivine.—A silicate of magnesium and iron and a rock-making mineral found only in those igneous rocks which have little or no feldspar. It easily suffers alteration by weathering and passes into serpentine, and in fact is seldom found except when at least partially altered to the fibrous webs of that mineral. The form of the unaltered crystals within the rocks is shown in Fig. 487, 17, and, cut in sections, the mineral appears in more or less elongated hexagons. The hardness of the unaltered mineral is about that of quartz. It has rather imperfect cleavages in two rectangular directions, and is usually translucent, with a vitreous luster and a color which is olive-green when not stained brown by oxide of iron. Streak uncolored. Hardness 6.5-7. Specific gravity 3.2-3.3. |