Everybody knows what rope is, but everybody does not know how rope is made or of what kinds of fiber it is manufactured. And very few probably know the history of rope making, or how it developed from the simple thread to the great cable which now holds giant vessels to their wharves or aids to anchor them in ocean storms. Let us go back and try to trace the history of the rope. It is a long one, going out of sight in the far past. In very early times men must have used some kinds of cords or lines for fishing, for tying animals, at times for tying men. These may have been strips of hide, lengths of tough, flexible wood, fibrous roots, and such gifts of nature, and in time all these were twisted together to make a longer and stronger cord or rope. Egyptian kitchen scene Scene in Egyptian Kitchen, Showing Use of a Large Rope to Support a Sort of Hanging Shelf We have evidence of this. Tribes of savages still have in use cords made of various materials and some of them very well made. These have been in use among them for long centuries. Take the case of our own Indian tribes. They long made use of cordage twisted from cotton and other fibers, or formed from the inner bark of various trees and the roots of others, and from the hairs, skins and sinews of animals. Egyptians making leather cords Reproduction of Sculpture From a Tomb in Thebes, Showing Preparation of Leather Cords by Process Similar to Rope Making Good rope was made also by the old Peruvians, by the South Sea Islanders, and by the natives of many other regions. Those on the seashore made fishing lines and well-formed nets, and certain tribes, among them the Nootka Indians, harpooned the whale, using cords made from the sinews of that animal, these being very strong and highly pliable. The larger ropes used by them, two inches in diameter, were made from the fibrous roots of the spruce. Civilized Rope Makers.All the ancient civilized peoples used ropes and cordage, made from such flexible materials as their countries afforded. We have pictures of this from ancient Egypt, in which the process of twisting strips of leather into rope is shown on the walls of their tombs. One workman is seen cutting a long strand from a hide which he turns round as he cuts, while another man walks backward with this, twisting it as he goes. The Egyptians also made ropes from papyrus and palm fibers, of which specimens still exist. Only by the use of large and strong ropes could they have moved the massive stones seen in their pyramids and temples. Scenes of rope making Cordage Manufacture by the Rope Walk Method Yarns passing from bobbins through perforated plates in forming of strands. When men began to move boats by sails, ropes of some kind must have been needed, and the early ships no doubt demanded long and strong cordage. We have pictures of these from several centuries before the Christian era, and we are told by Herodotus that Xerxes, when he built his famous bridge of boats across the Hellespont, 480 B.C., fastened them together by enormous cables which stretched from shore to shore, a distance of nearly a mile. Twelve of these ropes were used, about nine inches thick, some of them being made of flax and others of papyrus. Yarn spinning machine Early Type of Machine for Spinning Rope Yarn During the medieval and later centuries rope making was an active industry and America was not long settled before the rope maker became active. John Harrison, an English expert in this line, set up a ropewalk in Boston in 1641 or 1642, and for many years had a monopoly of the trade. But after his death the art became common and in 1794 there were fourteen large ropewalks in that city. In 1810 there were 173 of these industries in the United States, and from that time on the business has grown and prospered. Hand Spinning.In the period referred to all the work was done by hand, machine spinning being of later date. American hemp was used, this softer fiber being spun by hand long after Manila hemp was spun by machines. The hand-making process, long used, is an interesting one. The first step was to “hackle” the hemp. The hackle was a board with long, sharp steel teeth set in it. This combed out the matted tow of the hemp into clean, straight fiber. The instrument used in spinning was a large wheel, turned by hand, and setting in motion a set of “whirls” or revolving spindles, which twisted the hemp by their motion. The spinner wrapped a quantity of the hackled hemp around his waist and attached some of the fibers to the whirls, which twisted the hemp as he walked backward down the ropewalk, pulling out new fiber from his waist by one hand and pressing it into form and size with the fingers of the other. Rope making machine Four-Strand Compound Laying Machine Making Strands and Laying Rope in a Single, Continuous Operation 16-inch tow line Sixteen-Inch Towline with Eye Splice In forming a small rope, two of the yarns thus formed were twisted together in a direction opposite to that of the first twist. Then a second twisting followed, the direction being again reversed. Thus rope making may be seen to consist in a series of twisting processes, each twist opposite to the former, the rope growing in size and strength at each operation. Horse power or water power was used when the ropes became too large to be made by hand. Formation of Sliver (for Spinning) on First Breaker Modern ropewalk Interior of Present-Day Ropewalk Machine-made Ropes.The old ropewalk is today largely obsolete, the rope-making machine taking the place of the hand-making process, which was not adapted to produce the large cables which in time were called for. Steam-driven machines were first introduced about 1838. These are now used alike in making fine threads and yarns and in large ropes. There are two methods in the modern system of rope making. In one the strands are formed on one type of machine and twisted into a rope on another. In the second method both operations are performed on a single machine. The latter saves space, but is not so well fitted for large ropes as the former. A plant for the two-part method comprises two or more horizontal strand-forming machines, several bobbin frames, and a vertical laying-machine. The former twists several strands into a rope, the latter several ropes into a cable. The yarns, which are wound around bobbins, are drawn from them through perforated plates, these so placed that the yarns converge together and pass into a tube. In this they are compressed and at the same time twisted by the revolution of a long carriage or flyer, which can be made to vary in speed and direction. After being twisted the strands are wound around reels in readiness for the second, or laying process. In this the full reels are lifted by overhead chains and are placed in the vertical flyers of the laying-machine. Here again the strands are made to pass through openings and converge into a central tube, through which they pass to the revolving flyers, which perform the final duty of twisting them into rope. The finished product is delivered to a belt-driven coiling reel on which it is wound. Complete strand wound upon reel Removing Reel with Completed Strand from Forming Machine The most complete rope-making machine yet reached is that in which these two machines are combined into one. It economizes space, machinery and workmen, and also is more rapid in reaching the final result. But there are disadvantages which render it unfit for the larger sizes of rope, and it is therefore used only on a limited range of sizes. American Hemp.Among the fibers employed in rope making that of the hemp plant long held the supremacy, though in recent years it has been largely supplemented by other and stronger fibers. This plant is a native of Asia, but is now grown largely in other continents, taking its name from the country in which it is raised, as Russian hemp, Italian hemp, and American, or Kentucky, hemp, it having long found a home in the soil of Kentucky. It differs from the Manila fiber, which has now very largely supplanted it, by being much softer, though of less strength. In the old days of the sailing vessel hempen rope was largely used for the rigging of merchant and war ships, but the use of other fibers and of wire for rigging has greatly reduced the market for Kentucky hemp. There are various other fibers known under the name of hemp, the New Zealand, African, Java, etc., but the Manila and Sisal fibers, since the middle of the last century, have largely taken their place. Scenes of pine tar production
Manila and Sisal Fibers.Manila hemp, as it is called, is a product of our Philippine dependency, being obtained from a species of the banana plant which grows abundantly in those islands. Its fiber is very long, ranging from six to ten feet, and is noted for its smoothness and pliability, a feature which makes it ideal for rope making. Gloss and brilliancy are also characteristics of good quality Manila. American hemp after harvest American Hemp Stacked in Fields Manila hemp is obtained from the leaf stalks of the Philippine plant known as the AbacÁ, the leaf stems of which are compressed together, and constitute the trunk of the plant. It is obtained by scraping the pulp from the long fibers, drying these when thoroughly cleaned, and baling them for market. The high price of the Manila product, however, has brought a cheaper fiber, of American growth, into the market; this being that known as Sisal, extracted from henequen, a cactus-like plant of Yucatan. As a substitute for or rival of Manila hemp it has come into common use. Its cheapness recommends it despite the fact that it is not of equal strength, and also that its fibers are shorter, being from two to four feet in length. Sisal also lacks the flexibility of Manila, being much more stiff and harsh. The development of the self-binding reaper on our western grain-fields has opened a gold mine for Sisal cordage. Of the annual import of this fiber to the United States, 300,000,000 pounds in quantity, a large proportion finds its way to the wheat fields of the West. It is also used in all other wheat-yielding countries. Hemp cart Philippine Hemp Cart Loading sisal leavesLoading Fiber from Sisal Fiber Plant onto Plantation Car Henequen is now grown on large plantations, the plant being about five years old before the long, sword-like leaves are ready to cut. It continues to yield a supply for ten or twenty years, this lasting until the flower stalk, or “pole,” appears, after which the plant soon dies. As Manila fiber is at times adulterated with Sisal, so has the latter its adulterant in a plant called Istle, which grows in Mexico and has hitherto been chiefly used in brush making.
These are the chief plants used in rope making. To them we may add coir, obtained from the brush of the cocoanut, which has been long used in India, and has come into use in Europe in recent years. It is fairly strong and has the advantage of being considerably lighter than hemp or Manila. And, unlike these, it does not need to be tarred for preservation, as it is not injured by the salt water. Two other rope-making fibers of importance are the Sunn hemp of India and cotton, ropes of the latter being largely used for certain purposes, such as driving parts of textile machinery. Wire Ropes.We have not completed the story of rope making. There is the wire rope to consider, a kind of cordage now largely used in many industries, in which it has superseded hemp ropes and chains. These seem to have originated in Germany about 1821. In the bridge at Geneva, built in 1822, ropes of untwisted wire, bound together, were used, and some fifteen years later “stranded” wire ropes were employed in the Harz mines. These at first were made of high-class wire, but only steel is now used in their manufacture. A strand of wire rope generally consists of from six to nine wires and sometimes as many as eighteen, but much larger ropes are made by twisting these strands together. They are generally galvanized to prevent them from rusting. Storage of Manila fiber bales Stacking Bales of Manila Fiber with Portable Compressed Air Engine Manila fiber hank Hank of Manila Fiber Twelve Feet Long The applications of wire ropes are very numerous, an important one being for winding and hauling purposes in mines. For aerial ropeways they are extensively employed, and are of high value in bridge building, the suspension bridge being sustained by them. The strength of the steel wire used for ropes varies from seventy to over one hundred tons per square inch of sectional area, the weight of a hemp rope being about three times that of a wire rope of equal strength. Pine Tar for Ropes.Who does not know of the tarred rigging that once meant so much to the rope maker? Its very odor seems to cling to the pages of seafaring books. When steam power took the place of wind power in ships the use of tarred rigging naturally declined, yet tarred goods still form an important branch of the rope business. Pine tar is the kind best suited for cordage, the yellow, longleaf, or Georgia pine holding the first rank in the United States for tar making. This tree is found along the coast region from North Carolina to Texas. In tar-kiln burning only dead wood is used, the green tree yielding less tar and of lower quality. It is a slow process, as a brisk fire would consume the wood without yielding tar. As the tar comes from the kiln it is caught in a hole dug before the outlet and is dipped up and poured into barrels, the average yield being one barrel of tar to the cord of wood. As above said, it is indispensable to protect cordage exposed to the effects of moisture, except in the case of coir ropes. Oiling is also an important process in the manufacture of ropes from hard fibers, as Manila, Sisal and New Zealand. This softens them and makes them more workable, and it also acts as a preservative. Manila fiber being inspected Inspecting Manila Fiber at Dock Coils of rope ready for shippingShipping Platform of a Large Factory Why does Rope Cling Together?This is probably due to a degree of roughness in the surface of fibers, often imperceptible to the eye, yet preventing them when in close contact from slipping easily upon each other. This is greatly increased by twisting the fibers together, and is added to by the toughness of the fibers themselves, the whole giving to rope a great resisting power. In the case of wire rope it is the firmness with which the metal holds together that gives it its great resisting strength. It is also not unlikely that the pressure of gravitation takes part in rope making, by holding the fibers in close contact, even if we do not know how this force operates. What is Rope Used for?This is a question that has already been answered in great part. Its uses, in fact, are innumerable. It serves to hold things together, and also to hold them apart; to lift things into the air and to hold them down to the ground; to pull things forward and pull things back—but not to push things forward. For the latter something less flexible than rope is needed. Animals are tied or tethered by it and led by it, and man, himself, is one of its victims. This is especially the case in the dismal way in which man’s career upon earth has so often been ended by lifting him from the ground by the aid of a rope loop around his neck. It is of some comfort to know that this brutal use of the rope is being replaced by more humane methods of ending the lives of condemned criminals. How did the Expression “A-1” Originate?We have all become so accustomed to hearing the term “A-1” used to designate a thing as perfect that it does not occur to many of us to wonder how it originally came to be used in that connection. Its first use was as a symbol in the code by which vessels were graded in the register of shipping kept by Lloyd’s, the originators of marine insurance. “A-1” was the best rating given to the highest class vessels, “A” standing for perfect condition of the hull of the ship and “1” meaning that the rigging and whole equipment was complete and in good order. How has Man Helped Nature Give Us Apples?The original of all the varieties of the cultivated apple is the wild crab, which is a small and extremely sour fruit, and is native of most of the countries of Europe. We use the crab-apple for preserving even now, although man’s ingenuity has succeeded in inducing nature to give us many better tasting kinds. The amazingly large number of different varieties which we have today have all been brought into existence through the discovery of the process of “grafting.” There are a half a dozen or more different methods of grafting. The method most commonly practiced in working with apple trees is called “bud-grafting,” and consists of transferring a plate of bark, with one or more buds attached, from one tree to another. The wood of apple trees is hard, close-grained and often richly colored, and is suitable for turning or cabinet work. Apple-growers classify apples into three different kinds, each consisting of a great many separate varieties. The three general divisions are—table apples, which are characterized by a firm, juicy pulp, a sweetish acid flavor, regular form and beautiful coloring; cooking apples, which possess the quality of forming by the aid of heat into a pulpy mass of equal consistency, and also by their large size and keeping properties; and cider apples, which have a considerable astringency and a richness of juice. In the Land of the Apple The Rogue River Valley, Oregon, in one section of which this photograph was taken, is known all over America for its wonderful apples. One apple-raiser in this district gathered two hundred bushels of apples per acre from his six-year-old trees. What Kind of a Crab Climbs Trees?Besides the water-crabs that we are most of us used to seeing and eating, there are several different kinds of land-crabs. Probably the most interesting of them all is the great Robber-crab, which is found on certain islands of the Pacific. He is a creature of immense strength and climbs palm trees in order to pick, and break open, the cocoanuts. He lives in a den which he digs for himself in the ground. Darwin gives an interesting description of these extraordinary animals: “I have before alluded to a crab which lives on cocoanuts; it is very common on all parts of the dry land, and grows to a monstrous size. The front pair of legs terminate in very strong and heavy pincers, and the last pair are fitted with others weaker and much narrower. It would at first be thought quite impossible for a crab to open a strong cocoanut covered with husk, but Mr. Liesk assures me that he has repeatedly seen this effected. The crab begins by tearing the husk, fiber by fiber, and always from that end under which the three eye-holes are situated. When this is completed, the crab commences hammering with its heavy claws on one of the eye-holes till an opening is made. Then turning round its body, it extracts the white albuminous substance with its posterior and narrow pair of pincers. “Every night it is said to pay a visit to the sea, no doubt for the purpose of moistening its gills. The young are likewise hatched, and live for some time, on the coast. These crabs inhabit deep burrows, which they hollow out beneath the roots of trees, and there they accumulate surprising quantities of the picked fibers of the cocoanut husk, on which they rest as a bed. To show the wonderful strength of the front pair of pincers, I may mention that Captain Moresby confined one in a strong tin box, the lid being secured with wire; but the crab turned down the edges and escaped. In turning down the edges, it actually punched many small holes through the tin!” How are Files Made?A good tool-kit holds a number of files of various shapes. Some are flat, others half-round, three-sided, square and round. They are generally thickest in the middle, while their teeth are of various degrees of fineness and of different forms. A file whose teeth are in parallel ridges only is called single-cut or float-cut. Such are mostly used for brass and copper. When there are two series of ridges crossing each other the file is double-cut, which is the file best suited for iron and steel. Rasps are files which have isolated sharp teeth separated by comparatively wide spaces, and are chiefly used for soft materials such as wood and horn. Each of these three classes of files is made in six different degrees of fineness, the coarsest being called rough, the next middle, followed by bastard, second-cut, smooth and superfine or dead-smooth, each a degree finer than that which precedes it. Files are usually made with the hand, file-cutting machines not having been as yet perfectly successful on account of the delicacy of touch required in the work. The blanks, as the steel before it has teeth is called, are laid on the anvil and struck with the chisel, which rests obliquely on the blank, each blow raising a ridge or tooth. The strength of the blow depends on the hardness of the metal, and when one part is harder than another the workman alters his blows accordingly. When one side is covered with single cuts if the file is to be double cut he adds in the same manner a second series, crossing the others at a certain angle. In making fine files a good file-cutter will cut upwards of two hundred teeth within the space of an inch. The files, except those that are used for soft substances, are hardened by heating them to a cherry-red color and then dipping them in water. They are then finished by scouring and rubbing over with olive oil and turpentine. |