CHAP. V.

Previous

OF THE CLASSIFICATION OF NATURAL OBJECTS AND PHENOMENA, AND OF NOMENCLATURE.

(129.) The number and variety of objects and relations which the observation of nature brings before us are so great as to distract the attention, unless assisted and methodized by such judicious distribution of them in classes as shall limit our view to a few at a time, or to groups so bound together by general resemblances that, for the immediate purpose for which we consider them, they may be regarded as individuals. Before we can enter into any thing which deserves to be called a general and systematic view of nature, it is necessary that we should possess an enumeration, if not complete, at least of considerable extent, of her materials and combinations; and that those which appear in any degree important should be distinguished by names which may not only tend to fix them in our recollection, but may constitute, as it were, nuclei or centres, about which information may collect into masses. The imposition of a name on any subject of contemplation, be it a material object, a phenomenon of nature, or a group of facts and relations, looked upon in a peculiar point of view, is an epoch in its history of great importance. It not only enables us readily to refer to it in conversation or writing, without circumlocution, but, what is of more consequence, it gives it a recognized existence in our own minds, as a matter for separate and peculiar consideration; places it on a list for examination; and renders it a head or title, under which information of various descriptions may be arranged; and, in consequence, fits it to perform the office of a connecting link between all the subjects to which such information may refer.

(130.) For these purposes, however, a temporary or provisional name, or one adapted for common parlance, may suffice. But when a very great multitude of objects come to be referred to one class, especially of such as do not offer very obvious and remarkable distinctions, a more systematic and regular nomenclature becomes necessary, in which the names shall recall the differences as well as the resemblances between the individuals of a class, and in which the direct relation between the name and the object shall materially assist the solution of the problem, “given the one, to determine the other.” How necessary this may become, will be at once seen, when we consider the immense number of individual objects, or rather species, presented by almost every branch of science of any extent; which absolutely require to be distinguished by names. Thus, the botanist is conversant with from 80,000 to 100,000 species of plants; the entomologist with, perhaps, as many, of insects: the chemist has to register the properties of combinations, by twos, threes, fours, and upwards, in various doses of upwards of fifty different elements, all distinguished from each other by essential differences; and of which though a great many thousands are known, by far the greater part have never yet been formed, although hundreds of new ones are coming to light, in perpetual succession, as the science advances; all of which are to be named as they arise. The objects of astronomy are, literally, as numerous as the stars of heaven; and although not more than one or two thousand require to be expressed by distinct names, yet the number, respecting which particular information is required, is not less than a hundred times that amount; and all these must be registered in lists, (so as to be at once referred to, and so that none shall escape,) if not by actual names, at least by some equivalent means.

(131.) Nomenclature, then, is, in itself, undoubtedly an important part of science, as it prevents our being lost in a wilderness of particulars, and involved in inextricable confusion. Happily, in those great branches of science where the objects of classification are most numerous, and the necessity for a clear and convenient nomenclature most pressing, no very great difficulty in its establishment is felt. The very multitude of the objects themselves affords the power of grouping them in subordinate classes, sufficiently well defined to admit of names, and these again into others, whose names may become attached to, or compounded with, the former, till at length the particular species is identified. The facility with which the botanist, the entomologist, or the chemist, refers by name to any individual object in his science shows what may be accomplished in this way when characters are themselves distinct. In other branches, however, considerable difficulty is experienced. This arises mostly where the species to be distinguished are separated from each other chiefly by difference in degree, of certain qualities common to all, and where the degrees shade into each other insensibly. Perhaps such subjects can hardly be considered ripe for systematic nomenclature; and that the attempt to apply it ought only to be partial, embracing such groups and parcels of individuals as agree in characters evidently natural and generic, and leaving the remainder under trivial or provisional denominations, till they shall be better known, and capable of being scientifically grouped.

(132.) Indeed, nomenclature, in a systematic point of view, is as much, perhaps more, a consequence than a cause of extended knowledge. Any one may give an arbitrary name to a thing, merely to be able to talk of it; but, to give a name which shall at once refer it to a place in a system, we must know its properties; and we must have a system, large enough, and regular enough, to receive it in a place which belongs to it, and to no other. It appears, therefore, doubtful whether it is desirable, for the essential purposes of science, that extreme refinement in systematic nomenclature should be insisted on. Were science perfect, indeed, systems of classification might be agreed on, which should assign to every object in nature a place in some class, to which it more remarkably and pre-eminently belonged than to any other, and under which it might acquire a name, never afterwards subject to change. But, so long as this is not the case, and new relations are daily discovered, we must be very cautious how we insist strongly on the establishment and extension of classes which have in them any thing artificial, as a basis of a rigid nomenclature; and especially how we mistake the means for the end, and sacrifice convenience and distinctness to a rage for arrangement. Every nomenclature dependent on artificial classifications is necessarily subject to fluctuations; and hardly any thing can counterbalance the evil of disturbing well-established names, which have once acquired a general circulation. In nature, one and the same object makes a part of an infinite number of different systems,—an individual in an infinite number of groups, some of greater, some of less importance, according to the different points of view in which they may be considered. Hence, as many different systems of nomenclature may be imagined as there can be discovered different heads of classification, while yet it is highly desirable that each object should be universally spoken of under one name, if possible. Consequently, in all subjects where comprehensive heads of classification do not prominently offer themselves, all nomenclature must be a balance of difficulties, and a good, short, unmeaning name, which has once obtained a footing in usage, is preferable to almost any other.

(133.) There is no science in which the evils resulting from a rage for nomenclature have been felt to such an extent as in mineralogy. The number of simple minerals actually recognised by mineralogists does not exceed a few hundreds, yet there is scarcely one which has not four or five names in different books. The consequence is most unhappy. No name is suffered to endure long enough to take root; and every new writer on this interesting science begins, as a matter of course, by making a tabula rasa of all former nomenclature, and proposing a new one in its place. The climax has at length been put to this most inconvenient and bewildering state of things by the appearance of a system supported by extraordinary merit in other respects, and therefore carrying the highest authority, in which names which had acquired universal circulation, and had hitherto maintained their ground in the midst of the general confusion, and even worked their way into common language, as denotive of species too definite to admit of mistake, are actually rendered generic, and extended to whole groups, comprising objects agreeing in nothing but the arbitrary heads of a classification from which the most important natural relations are professedly and purposely rejected.38

(134.) The classifications by which science is advanced, however, are widely different from those which serve as bases for artificial systems of nomenclature. They cross and intersect one another, as it were, in every possible way, and have for their very aim to interweave all the objects of nature in a close and compact web of mutual relations and dependence. As soon, then, as any resemblance or analogy, any point of agreement whatever, is perceived between any two or more things,—be they what they will, whether objects, or phenomena, or laws,—they immediately and ipso facto constitute themselves into a group or class, which may become enlarged to any extent by the accession of such new objects, phenomena, or laws, agreeing in the same point, as may come to be subsequently ascertained. It is thus that the materials of the world become grouped in natural families, such as chemistry furnishes examples of, in its various groups of acids, alkalies, sulphurets, &c.; or botany, in its euphorbiaceÆ, umbelliferÆ, &c. It is thus, too, that phenomena assume their places under general points of resemblance; as, in optics, those which refer themselves to the class of periodic colours, double refraction, &c.; and that resemblances themselves become traced, which it is the business of induction to generalize and include in abstract propositions.

(135.) But every class formed on a positive resemblance of characters, or on a distinct analogy, draws with it the consideration of a negative class, in which that resemblance either does not subsist at all, or the contrary takes place; and again, there are classes in which a given quality is possessed by the different individuals in a descending scale of intensity. Now, it is of consequence to distinguish between cases in which there is a real opposition of quality, or a mere diminution of intensity, in some quality susceptible of degrees, till it becomes imperceptible. For example, between transparency and opacity there would at first sight appear a direct opposition; but, on nearer consideration, when we consider the gradations by which transparency diminishes in natural substances, we shall see reason to admit that the latter quality, instead of being the opposite of the former, is only its extreme lowest degree. Again, in the arrangement of natural objects under the head of weight or specific gravity, the scale extends through all nature, and we know of no natural body in which the opposite of gravity, or positive levity, subsists. On the other hand, the opposite electricities; the north and south magnetic polarities; the alkaline and acid qualities of chemical agents; the positive and negative rotations impressed by plates of rock crystal on the planes of polarization of the rays of light, and many other cases, exemplify not merely a negation, but an active opposition of quality. Both these modes of classification have their peculiar importance in the inductive process: the one, as affording an opportunity of tracing a relation between phenomena by the observation of a correspondence in their scales of intensity; the other, by that of contrast, as we shall show more at large in the next section.

(136.) There is a very wide distinction, too, to be taken between such classes as turn upon a single head of resemblance among individuals otherwise very different, and such as bind together in natural groups, by a great variety of analogies, objects which yet differ in many remarkable particulars. For example: if we make colourless transparency a head of classification, the list of the class will comprise objects differing most widely in their nature, such as water, air, diamond, spirit of wine, glass, &c. On the other hand, the chemical families of alkalies, metals, &c. are instances of groups of the other kind; which, with properties in many respects different, still agree in a general resemblance of several others, which at once decides us in considering them as having a natural relation. In the former cases, our ingenuity is exercised to determine what can be the cause of their resemblance, in the latter, of their difference; the former belong to the province of inductive generalization, and afford the most instructive cases for the investigation of causes; the latter appertain to the more secret recesses of nature; the very existence of such families being in itself one of the great and complicated phenomena of the universe, which we cannot hope to unriddle without an intimate and extensive acquaintance with the highest laws.39


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page