Part II. Steam Shovel Work.

Previous

Widening a Cut; Loading on the Main Track.—The simplest and one of the most frequent cases for the application of a steam shovel is the widening of a single track railway cut. The manner of doing this is shown in Fig. 18. A switch, A B, is put in the main track just beyond the end of the cut and far enough away to permit the steam shovel (when standing on the side track) to clear cars on the main track. Cars are then placed opposite it on the main track and the machine is ready for excavation.

Fig. 19.

It very frequently happens that the end of the cut joins directly on an embankment, as shown in profile, Fig. 19. In cases of this kind it would be necessary to widen the embankment for the reception of the side track, near the end of the cut, if the machine were to begin work at that point, C, Fig. 18. This is very seldom done; the usual method is to remove the section, A, Figs. 19 and 20, to B by hand labor with wheelbarrows or with teams and scrapers. The excavated material is used to widen part of the embankment near the end of the cut for the reception of the side track. Section A is made barely long enough to provide a standing place for the steam shovel and clear cars on the main track; it is seldom over 50 ft. long, and averages about 30 ft. After placing the machine in this space it is ready for work. Strings of 10 to 20 cars are then drawn along the main track, and stopped opposite the machine for loading.

Fig. 20.
Fig. 21.

When the machine has reached the end of the switch, it advances on short sections of track, generally 4 ft. long, which are placed in front of it, and again taken from its rear when it has moved forward one section of track more than its own length. When no more cuts are to be made for still further widening, the switch is taken up again and the machine advances on its own track sections, Fig. 21. When other cuts are to follow, however, a loading track is needed for the next cut; the side track is then extended for this purpose at convenient intervals, generally about 300 ft. at a time though often after each space of a rail length (usually 30 ft.) is clear. The latter is by far the best practice, as it permits the immediate withdrawal of the machine in case of a threatened cave-in, sidehill slip, or other unforeseen danger.

After all the cars have been loaded they are taken away for unloading. Sometimes the steam shovel is left idle until the train returns, which is a very wasteful method of working, even where the haul to the dump is short, half a mile to two miles. Two engines and crews should be furnished for hauls up to ten miles; three engines and crews, or more, for longer hauls, or where the traffic on the main line is very heavy, and delays to the work trains are frequent. The material is generally utilized in filling trestles, widening embankments for side tracks, double tracks, yards, etc., thereby making two improvements at the same time.

Fig. 22.

In widening a cut it is good policy to keep the grade of the pit from 1 to 2 ft. below the surface of the subgrade of the main track, as shown in Fig. 22, thereby providing for drainage of the ballast and also providing a receptacle for the spreading of loose material dropping off the cars and washing in from the surface of the cut; there is nearly always considerable of this loose material to roll or wash into the pit after the cut has been completed; and unless room is provided for it, the accumulation will soon reach the height of the track, washing mud on it, and choking the drainage, thus injuriously affecting the main track.

Widening a Cut; Loading on a Side Track Graded by Hand or Steam.—The delays in loading on the main track of a railway in operation, due to the clearing of the track for all trains, vary from one to four hours per day of ten hours, and sometimes amount to as much as seven hours, depending upon the density of the traffic on the line. The first cut in a case such as the latter is therefore necessarily an expensive one, and where the traffic is so heavy it is often cheaper to make a narrow cut for the side track, on which the steam shovel is to load, either by wagons and wheel scrapers, Fig. 23, or by hand with wheelbarrows loading back on cars, Fig. 24.

Fig. 23. Fig. 23, a.
Fig. 24. Fig. 24, a.

The latter plan has the great disadvantage that only one car at a time can be loaded and only a few men (six to ten) can be employed. Therefore this plan is never adopted where quick work is required, but is used only where ample time is available, and mostly as an early spring preliminary job, preparing the way for the operation of the steam shovel later in the season. From three to six flat or coal cars are used, enough to require a whole day for the gang of men employed to load; the material from the face of the excavation is loaded on wheelbarrows, and wheeled over the empty cars to the one farthest from the cut. This car is loaded first, then the one next to it, etc. At night the loaded cars are taken out of the switch by the first available freight train and hauled to the nearest yard or side track where widening of the embankment is wanted, or where the material can be otherwise used to advantage, and there unloaded by a small gang of men on the following day; the cars to be returned again the next night. Other empty cars are placed in the pit track for loading next day, by a train bound toward the pit the same night the loaded cars were taken out. The work can be carried on from either one or both ends of the cut. Coal cars should never be used if flats can possibly be obtained, as the latter can be unloaded by a gang of men one-third as large as would be necessary for unloading coal cars.

Fig. 25. Fig. 25, a.

Sometimes small dump cars are used, drawn by horses or mules, and the material unloaded at the end of the cut, thereby widening the embankment for a long side track, Fig. 25. The narrow gage track, A, is laid over the ditch adjoining the main track; the material for any slight excavation that may be necessary for this track is shoveled on the slope of the cut, as at C, on the cross section. The material is then loaded on small dump cars standing on track A, and unloaded at D. The cars are returned on track B. The cross-overs, E and F, are taken up occasionally and relaid near the advancing ends of the cut and dump.

In short cuts the narrow excavation necessary for placing a side track in the cut for the steam shovel to load on is generally taken out by carts and dumped at the ends of the cut, widening the embankment for a long side track.

The plan of excavation with wagons or wheel scrapers for this side track, shown in Fig. 23, is adopted where the traffic is too heavy to permit loading on the main track; when the side track is wanted at the earliest possible time; and in cuts not over 40 ft. deep. The material is dumped at the ends of the cut until the haul becomes too long, then it is taken to the top of the cut over sidehill driveways excavated for the purpose, and unloaded at a sufficient distance from the edge of the new cut to prevent its washing back by rains.

These expedients are necessary only on railways where traffic is very heavy. On most railways (on all where the total delay does not exceed five hours per day) it is cheaper to load on the main track until the first cut has been made. This necessarily involves the delay due to running to and returning from the nearest side track to get out of the way of every main line train, until the pit track is long enough to contain the construction train. This, however, seldom requires more than two weeks, generally only one; the excavation of all of the first cut does not often occupy more than a month, and is only a very short time compared with the whole length of time that the steam shovel is usually in operation on all but very small jobs.

Fig. 26.

After a side track has been laid in the first cut made by one of the methods described above, the steam shovel begins work at A, Fig. 26, loading cars standing on the side track, and some of them extending out on the main track. At first not more than ten cars should be coupled to the engine, so that the train can quickly run into the side track on the approach of a main line train, and not delay its passage. After the steam shovel has advanced a train-length, the full number of empty cars can be coupled to the engine, as they will all be on the side track while being loaded.

Fig. 27.

Where the embankment has been previously widened by the excavated material from the cut, Fig. 27, a sufficient length to permit laying a side track long enough to hold the construction train, the full number of cars can be used at once, a great advantage in keeping the steam shovel at work without interruption by passing trains, which is unavoidable when some of the cars extend out on the main track.

After the machine has reached the other end of the cut it is either withdrawn for other work, or placed on the other side of the main track for widening the cut on that side. The steam shovel begins at A, Fig. 28, loading cars standing on the main track; the main line traffic being carried over a temporary main track built in the excavation previously made by the steam shovel on the other side of the main track. Only a few cars at a time can be used for loading at first, unless the temporary main track has been extended toward B a sufficient length to clear the usual string of about 20 cars when the first car is being loaded.

Grading Wide Areas.—In loading gravel for ballasting, or in widening a cut for the purpose of grading yard, shop or station grounds, the usual manner of doing the work is shown in Figs. 29 to 34. After the first cut has been made by one of the methods already described the steam shovel is started in at A, Fig. 29, for the second cut. After its completion the first side track becomes available for the storage of empty and loaded cars as in Fig. 30, greatly increasing the convenience of handling the cars and preventing delays by interferences between the strings of empty and loaded cars, then the latter cannot be taken away promptly on account of passing or shortly expected trains on the main line. After the completion of the third cut, another side track is available for cars, Fig. 31, the loaded cars are then placed on the first inside track and the empty ones on the second. The former are taken away by the road crew, and on their return placed on track No. 2. The pit crew set their loaded cars on track No. 1 for the road crew, and get their empties from track No. 2. The pit track in the rear of the steam shovel is used as a repair track for cars.

Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.

After the completion of the fourth cut, Fig. 32, track No. 3 is used for a car repair and extra storage track for loads or empties, for which there may not be room in tracks 1 or 2. Enough tracks have then been built for the most efficient and economical handling of the loaded material, and if the empty cars are promptly returned the steam shovel can be kept almost constantly at work. Each pit track, on which the steam shovel advances, becomes a side track on the completion of that cut, to be used as a loading track for the next cut up to the fourth cut, after which the loading tracks are taken up on completion of the cut for which they are used, Fig. 33, and relaid in the pit of the next cut, to be used, taken up, and relaid as before for the following cuts. In pits less than one-quarter mile in length, it is sometimes necessary to retain more of these tracks to provide ample storage space for all loaded and empty cars.

Fig. 32.
Fig. 33.
Fig. 35.
Fig. 36.

On all large pieces of work where the main line traffic is heavy it is important that the first side track from A to B, Fig. 32, shall be of sufficient length (usually about 700 ft.) to hold the engine and a full string of cars to avoid going on the main track when switching loads to C, and obtaining empties from D. If there is an embankment from A to B it can be widened with material taken from the cut, either by wagon or cars.

Fig. 34.

Grading by this method for yard, shop and station grounds occurs mostly near large cities where better terminal facilities must be provided for. The width of the area excavated in this manner seldom exceeds 200 ft. (eight cuts) except in old gravel pits used for furnishing material for ballasting track, which are sometimes 300 ft. (twelve cuts) or more in width.

Gravel pits and other wide areas excavated are seldom less than one-quarter mile or more than one mile in length. One-half to three-fourths of a mile is the most usual length; in exceptional cases two miles have been reached. Long and narrow pits can be worked more advantageously than short and wide ones.

Cutting Down Grades.—For cutting down grades on railways where the traffic is not too heavy to prohibit loading on the main track, the usual plan of operations is shown in Figs. 35 to 42. The machine begins work at A, Figs. 35 and 36, the beginning point of the new grade, loading cars on the main track, cutting to the line of the new grade, and moving forward on the track on the surface of the pit as long as the height of the crane permits raising the dipper high enough over the cars to open the bottom door of the dipper and discharge its contents, B, Fig. 35. This point is usually about 2 ft. below the main track. The machine must then be gradually run upward on a cribwork of wooden blocking, generally pieces of pine 6 by 12 ins. by 4 ft. long, with some longer track stringers for supporting the sections of track on top of the blocking, and some thinner pieces for attaining exact heights of blocking when needed. As the machine moves forward the dipper still continues cutting to the line of the new grade, while the machine is gradually run upward on the blocking on a grade parallel to the grade of the main track, and slightly below it, maintaining a constant height between the top of the track on the blocking and the highest point to which the dipper can be raised on the crane to insure discharging its load on the cars. When the dipper has cut as low as the length of the dipper handle will permit, C, Fig. 35, the greatest depth to which the machine will cut below the level of the main track has been reached, and as the steam shovel advances the surface of the pit will be on a grade parallel to the grade of the main track, running upward to the summit, S, then downward, and continue so until it cuts the new grade line at H, when the dipper is made to cut on this grade, while the blocking under the machine is gradually lowered as it was previously raised, until the steam shovel reaches the end of the new grade at I, when it is again on the surface of the pit.

Fig. 37.
Fig. 38.
Fig. 39.

Although the machine is gradually run upward and downward, it is always blocked level after each forward move before beginning work, to insure quick and easy swinging of the crane, as previously explained. Most machines will cut 5 ft. below the main track and load on a flat car with 18 ins. side boards. Some machines will cut as low as 8 ft., and they are preferred to others on railways where much work of this kind is done, as their use often avoids making an extra cut.

Fig. 40.
Fig. 41.
Fig. 42.

After the first cut has been completed, the pit track, A 1, Fig. 36, becomes the temporary main and loading track; the main track is taken up from C to H, and the steam shovel run back to C to begin the second cut, Fig. 42, excavating it in the same way as the first, and loading on the temporary main track. This track again is taken up after the second cut, the machine begins at D and ends at G for the third cut and loads on the pit track in the second cut; the fourth cut is made in a similar way, the machine beginning at E and ending at F, Fig. 36. The fifth and last cut is merely a widening cut, made by loading on the track in the pit of the fourth cut. The material of each cut after the first is loaded on the track laid in the preceding cut. After the completion of the last cut, the permanent subgrade having been reached, the main track is laid on the permanent line, and the small quantity of material obtained from cutting the ditches loaded on cars by hand and taken away for unloading. The most frequent depth of cut made at the summit of grades is about 10 ft. (two cuts), Figs. 38 and 39.

Fig. 42½.
Fig. 43.
Fig. 44.
Fig. 45.

When the main track is on a curve, as frequently happens, an extra cut can often be avoided by slightly changing the alinement of the new main track, and at the same time reducing the degree of curvature, as shown by Figs. 42½ and 43. This is particularly applicable where an odd number of cuts must be taken to reach the bottom of the new grades. The dipper will cut to a slope of about 1 to 1. When greater slopes are required, it must be done by hand or undercutting resorted to. Sloping by hand is slow and expensive work, impracticably so in all tenacious materials; it has therefore become the exception, and undercutting the rule. Cuts made in the latter manner sometimes present a rather ragged appearance when just completed, but the irregularities soon merge into a smooth surface as the action of the elements produces the natural slope of the material; the smaller cost amply compensates for the temporary lack of finished appearances. The amount of hand labor necessary where undercutting is not practiced is shown by the sections A in Figs. 38 and 41. This can be entirely avoided by undercutting the slopes, as shown in Figs. 39 and 42; the sections B will slough off within a year or two and most of the material lodge in the spaces C; a small part of this material may roll to the bottom of the cut, and can be removed by loading on cars by hand, or space may be provided for it by making the cut a few feet wider at the bottom. In most cuts for reducing grades this extra width must be cut out anyhow to provide room for both steam shovel and loading track.

Fig. 46.
Fig. 47.
Fig. 48.

In reducing grades on railways with a traffic too heavy to permit loading on the main track, a temporary main track must first be built by one of the methods shown in Figs. 23, 24 and 25. The temporary main track, A, Figs. 44, 45 and 46, is then laid, as shown in Fig. 28, to carry the traffic of the road unobstructed. The main track then becomes the loading track for the first cut, and the following cuts are made as shown in Figs. 44, 45 and 46. The temporary main track, A, is moved to a second position, B, when the material under it must be cut away. Great care should be taken to arrange the cuts so that the temporary main track will have to be moved as few times as possible, and to attain the lowest level when it is moved. In loose gravel or sandy materials wider bermes and longer slopes must be allowed for the shelf on which the temporary main track rests than are shown in the above figures, but the method of doing the work is essentially the same.

If the depth of the original cut in tenacious materials exceed the height which the dipper can reach, and break down the material above it, the cuts are arranged as shown in Figs. 47, 48 and 49. Temporary loading tracks, L, are built on the side of the slope, and the first cut on each side made by loading on them; the following cuts are then made, as shown on the figures. If the main line traffic is very heavy, it is turned over the temporary main track, A, Fig. 47, until the cut is completed.

Fig. 49.

The original cuts are not often more than 10 ft. deep, and the section shown in Fig. 45 covers the majority of cases.

On double-track railways the traffic in both directions is generally turned over one track for the length of the new cut, thereby avoiding considerable expense in providing two temporary main tracks.

Each different piece of work presents different conditions; and while the same general principles apply to all, every case requires disposition according to its own special circumstances. Great care and study should be exercised in arranging the cuts, to reduce them to the fewest possible number, and avoid shifting, taking up and relaying tracks oftener than absolutely necessary.

Fig. 50.
Fig. 51.

Construction Work.—On railways the steam shovel is used mostly in connection with maintenance of way work: loading gravel for ballasting the track, widening cuts, filling trestles, etc., but it is also largely used for various construction work, particularly re-alinements of the main track for reducing grades and curvature. In excavation of this class, thorough cutting should be avoided if possible, for reasons which will be subsequently explained. The work is begun by laying a temporary track, A, Figs. 50, 51 and 52, over the surface of the ground if its natural grade is not too steep to permit operating construction trains over it. Grades up to 6 per cent. (316.8 ft. per mile) can be used. A mogul engine will draw six empty flats over such a grade, a sufficient number of cars to start the work for the short cuts near the summit. The cuts are then made as indicated in Fig. 52.

Fig. 52.
Fig. 53.
Fig. 54.

If the grade of the ground is too steep to operate a track laid on it, one of the three methods may be adopted to obtain a grade for this track:

1. The steam shovel is made to cut a trench between the points A and B, Fig. 53, where the slope of the ground is too steep to permit operating a track laid on its surface, and varying in depth from 5 to 10 ft. as may be necessary to attain the desired grade. The excavated material is dumped at D, Fig. 54, to be removed with the next cut. The length of the crane will not permit dumping at E a sufficient distance (20 ft. or more) to obtain a berme and prevent the material washing back into the new cut in the course of time; it must, therefore, be dumped at D and removed as described, unless the slope of the ground is away from the cut, as indicated by the line D F, Fig. 54; in such a case the excavated material can be dumped at F.

2. By excavating the trench with teams and scrapers.

3. By through-cutting a trench with the steam shovel, loading the material on small dump cars or wagons, and wasting it at the nearest available place.

Fig. 55.
Fig. 56.
Fig. 57.

After the first loading track has been laid in this trench, the cuts are made as indicated in Fig. 54.

When the slope of the ground is too steep to permit a track to be laid on it which can be operated, or to cut a trench for it, as frequently occurs when the excavation passes through a high spur or knoll, Figs. 55, 56 and 57, the steam shovel mounted on standard gage railway tracks cannot be used, and a machine independent of a railway track for transportation must be employed. It is started at A, Figs. 56 and 57, loading small dump cars drawn by horses, and dumping at the nearest available place outside of the lines of the new cut, as at D, Figs. 56 and 57. Sometimes wagons are used if the cuts near the top are short and not very deep, so that a temporary standard gage track can soon be run through the cut, and the material loaded on cars. The dumping track at D is changed to E F, etc., Fig. 57, as the machine cuts lower, maintaining a descending grade from the steam shovel.

Fig. 58.
Fig. 59.
Fig. 60.

In cases of this kind it is often necessary to run the steam shovel up a very steep grade to reach the point where it is to begin work. This can readily be done by attaching one end of a one and a half inch rope to a strong tree and winding the other end around the driving axle. Then starting the running gear the machine can be drawn up grades where it could not otherwise propel itself. As a precautionary measure, it is advisable to use at least two ropes.

A combination of all these methods sometimes becomes necessary, as shown in Figs. 58 and 59. The material in the knoll, K, Fig. 58, is loaded on small dump cars and unloaded at the nearest available place. When this knoll has been cut down sufficiently, and trenches cut between A B and C D, the track A B C D is built, and the excavation proceeded with, as heretofore described. The high points B, K and C are cut down first until the grade of the loading track between B and C is parallel to the grade of the proposed new main track. Cuts nearly 100 ft. in depth and a mile in length have been excavated in this manner. Two and often three steam shovels are employed at the same time, working near the ends of the cut until the through track has been laid, and then following each other, as shown in Fig. 60. As soon as possible, a through track should always be laid, as it greatly increases the capacity for the prompt and efficient handling of the cars.

Fig. 61.
Fig. 62.

Enough side tracks for storing both empty and loaded cars should be built close to the work, where they can be reached without going out on the main track. Sometimes the pit tracks behind the steam shovels are utilized for this purpose, but these tracks are taken up too often, and should not be depended upon for side tracks, though they may be used as such occasionally.

In through-cutting the material is loaded on small dump cars running on tracks of about 3 ft. gage, drawn by horses, and wasted on some side hill or other nearest available place; this haul seldom exceeds a quarter of a mile in length. In Fig. 61, the empty dump cars standing at A are drawn over the cross-over C by a horse, to be loaded at B; then run to D, and when from four to six cars have been loaded they are taken to the dumping place and unloaded; then returned to A.

In loose materials considerable time is lost in waiting from the time the loaded car is run to D and the next empty brought from A to B. In tenacious materials not nearly so much time is lost, as the dipper cannot be filled so rapidly. This loss of time is largely avoided by arranging double loading tracks, Fig. 62, one on each side of the steam shovel, and connected to a central track for empties by the cross-over C and C´ and switches S and S´. Two horses are used, one on each side of the central track, to bring forward the empty cars from A to B, and A to B´, and return them to D and D´; these operations are alternately performed, each empty car on one loading track being brought forward while the other is being loaded. The cross-overs C and C´ should be kept close to the rear of the steam shovel, and as it advances they must be taken up and relaid; this becomes necessary about once in three days in soft materials and about once a week in hard stuff.

Portable sections of tracks, switches and cross-overs are generally used between the points A and B, and can be relaid very quickly.

Standard gage railway cars cannot be used in thorough cutting, as the track cannot be laid in front of a point at right angles to the post of the steam shovel, and when the track ends there the crane cannot swing back far enough to load the car. Thorough cutting should be avoided if possible, the cost due to the loss of time in switching cars, relaying tracks, extra horses and men, etc., makes it more expensive than excavating from a side cut.

In excavating canals, harbor and dockwork, stripping coalfields, stone quarries, grading for new city additions, and other work not connected with a railway, as well as railway construction and re-alinement work which is inaccessible to a railway track in its early stages, the general manner of using the steam shovel is the same as for railway work; varying only in details, depending upon the means of disposing of the loaded material, by wagons, carts or dump cars, and the use or waste of this material.

Although the steam shovel is employed mostly on railway work, it is not exclusively a railway machine. It is already largely used on other work, and its use in this direction is rapidly extending, especially on the increasing number of extensive public works in the vicinity of large cities.

The most economical height of cut varies greatly with the nature of the material. In dry clay, loam and other dry materials which can be broken down readily with a bar or iron pointed pole (Fig. 17), cuts of 25 to 30 ft. in height are usually taken. In harder and more tenacious materials it should not exceed the height to which the dipper can be raised, 14 to 20 ft., varying with the size of the machine. In sand and loose gravel which easily falls down to the machine heights up to 60 ft. are common, and sidehill cuts in loose gravel up to 300 ft. in height have been taken. In such cases, and also in the removal of landslides, great care must be taken to avoid an avalanche of the material burying the machine when the toe of the slope is cut away. The pit track should always be kept close up to the sections of track under the steam shovel, so that it can be quickly withdrawn when necessary. As a general rule, the higher the cut the better, as the machine can then load the greatest amount of material between each advance, and lose the least possible amount of time. Each forward move of the machine requires from three to ten minutes, depending upon the height of blocking, if any, it is working on; this is a dead loss, as no cars or wagons can be loaded during that interval.

Powder and dynamite are frequently used to good advantage to shatter the harder materials before excavating. When thus broken up about twice the amount of these materials can be loaded in a day. Great care must be exercised in the quantity of the explosive used, and in the location of the drill holes to prevent injury to the steam shovel. The explosives should be stored in a safe place, preferably in a vault at some distance from the place where they are to be used.

The use of dynamite is confined mostly to bowlders, ledges of rock and stumps of trees, while powder is generally used for hardpan, shale, slate, cemented gravel and hard clays. For the latter materials dynamite is usually too powerful, as instead of merely lifting and loosening them, as desired, it shatters shale and slate into fragments, and compresses the other materials about it, forming a "cistern" from 3 to 5 ft. in diameter, as shown in Fig. 63. Sometimes small quantities of it are used specially for this purpose to make room for a large charge of powder at the bottom of the drill hole, where its explosion will have the most effect in loosening the superincumbent material. A charge of one-quarter to one-half of an ordinary dynamite cartridge will usually blow out a "cistern" large enough to contain from one-half to one keg of powder, Fig. 64.

The depths of the drill holes in these materials vary from 4 to 20 ft.; they are made with a drill, or, in the softer materials, with an auger similar to a plank auger, generally about 2 ins. diameter, with extension pieces for deep holes, as shown in Fig. 65. Crowbars and wooden and iron wedges are also often used in breaking down overhanging material when it cannot quite be reached by the dipper.

The excavation of materials for which powder or dynamite are used to loosen them requires a powerful machine, with a strongly built, medium size dipper. A small or lightly built machine giving good satisfaction in soft materials would prove an utter failure here.

Fig. 63.
Fig. 64.
Fig. 65.

Assuming good management and a competent crew, the daily output of a steam shovel depends mostly upon the nature of the material excavated; it is also somewhat dependent upon the height and width of the face of the cutting, and largely upon the facilities for disposing of the loaded material, and keeping the machine almost constantly at work by an ample supply of empty cars and wagons. Although these varying conditions differ on each piece of work, the probable output of a machine for a given excavation can be closely estimated by good judgment based on previous experience with similar work. The average daily output in different kinds of materials, and under average, favorable and unfavorable conditions, as described above, is shown in Table II.:

TABLE II.

Capacity Delay. Sand. Loose gravel. Dry loam. Dry clay. Damp clay.
of dipper. hours.[2] Cu. yds. Cu. yds. Cu. yds. Cu. yds. Cu. yds.
2½ cu. yds. 1 Good 2,400 2,400 2,000 1,800 1,200
" 5 Poor 1,200 1,200 1,000 900 600
" Avg. 1,800 1,800 1,500 1,350 900
1¾ cu. yds. 1 Good 1,600 1,600 1,200 1,000 800
" 5 Poor 800 800 600 500 400
" Avg. 1,200 1,200 900 750 600
1 cu. yd. 1 Good 1,000 1,000 800 700 500
" 5 Poor 500 500 400 350 250
" Avg. 750 750 600 525 375

[2] The delay in hours is the time lost in moving forward and waiting for empty cars.

TABLE II.—Continued.

<————— Loosened by explosives.———>
Stiff blue Hard Mixed clay Loose Cemented
Capacity Delay. clay. pan. and boulders. rock. gravel.
of dipper. hours.[3] Cu. yds. Cu. yds. Cu. yds. Cu. yds. Cu. yds.
2½ cu. yds. 1 Good 800 600 600 600 600
" 5 Poor 400 300 300 300 300
" Avg. 600 450 450 450 450
1¾ cu. yds. 1 Good 600 400 400 400 400
" 5 Poor 300 200 200 200 200
" Avg. 450 300 300 300 300
1 cu. yd. 1 Good 400 300 300 300 300
" 5 Poor 200 150 150 150 150
" Avg. 300 225 225 225 225

[3] The delay in hours is the time lost in moving forward and waiting for empty cars.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page