One of the most extraordinary things regarding luminescence in general is the small amount of material necessary to cause a visible emission of light. To take an extreme case, the flash of light resulting from the impact on ZnS of a single a particle, a helium atom, is visible to the naked eye. Addition of one part in a million of some heavy metal to pure CaS will confer phosphorescent properties on the latter. We are forced to believe that the heavy metal enters into some reaction during illumination which is reversed with light emission after illumination and a very small amount of heavy metal is necessary. Pyrogallol in water, 1:5,000,000 (m/512,000), can be oxidized with light production by K4Fe(CN)6 and H2O2 (Harvey, 1917) and m/100 pyrogallol + H2O2 will give a visible light with colloidal platinum in 1:250,000 concentration (Goss, 1917).
Luciferin and luciferase from Cypridina will also luminesce in exceedingly small concentration. If one grinds a single Cypridina in a mortar with water and dilutes the extract to 25,600 c.c., light can be observed if luciferin is added to this dilute luciferase solution. By determining the volume of the luminous gland of Cypridina and even assuming that this volume is all luciferase, one can calculate that one part of luciferase in 1,700,000,000 parts of water will give light when luciferin is added. Likewise, a similar dilution of luciferin will give visible light when luciferase is added.
The sensitivity of our eye is largely responsible for the detection of so small an energy change. As we have seen, recent determinations have proved that the dark adapted eye can detect 18 × 10-10 ergs per second. From the heat of complete oxidation of pyrogallol it is possible to calculate the amount of pyrogallol necessary to give 18 × 10-10 ergs if completely oxidized. This quantity is infinitesimally small. When pyrogallol is oxidized by K4Fe(CN)6 and H2O2, it is not completely oxidized and probably only a small amount of the energy is converted into light; otherwise we should be able to see the luminescence of a very much weaker concentration of pyrogallol. As the reaction luciferin ? oxyluciferin is so easily reversible, very little energy must be liberated, and, as experiments indicate, very little heat, if any, accompanies light production. Even though this be true, it is still possible for a very small amount of luciferin to produce a very large amount of light.
A very small amount of luciferase only is necessary because it behaves as an enzyme and follows the general rule that catalysts act in minute concentrations.
On the assumption that luciferase is an enzyme, an organic catalyst oxidizing luciferin with light production, we may appropriately inquire into the relation between the concentration of luciferin and luciferase and intensity and duration of luminescence. Oxygen tension, hydrogen ion concentration and temperature must be maintained constant as these all affect both intensity and duration of luminescence. Before considering luciferin and luciferase, however, let us study a few well-known chemiluminescent oxidations with special reference to concentration of reacting substances and temperature.
The effect of temperature on luminescence is of special interest because it gives us a means of analysis for determining if the luminescence depends on reaction velocity. We know that photochemical reactions are very little affected by temperature because the reaction is dependent on the absorption of light, a physical process, and this increases only a small per cent. for a rise of temperature of 10° C. To put it in the usual way, its temperature coefficient (Q10) for a 10° interval is usually less than 1.1. On the other hand, we should expect photogenic reactions, in which some of the chemical energy is converted into radiant energy, to give off much more light the greater the reaction velocity. As reaction velocity increases so rapidly with temperature (Q10 = 2 to 3), luminescence intensity should rapidly increase with increase in temperature.
Trautz (1905), from his extensive study of the chemiluminescence of phenol and aldehyde compounds came to the conclusion that luminescence intensity was proportional to reaction velocity. He based his conclusions largely on the effects of temperature and concentration of reacting substances and went so far as to declare that any reaction would produce luminescence if the reaction velocity were sufficiently increased. It is quite true that increasing the temperature does increase the intensity of chemiluminescence, but this is only within certain limits. As we raise the temperature, chemiluminescence becomes more intense but we soon reach a temperature for maximum luminescence and above this the intensity diminishes. This is especially well seen in the action of various oxidizers on pyrogallol and H2O2 recorded in Table 10. At 100° C. practically no light is produced by many oxidizers which are themselves unaffected at 100°. If we are to connect reaction velocity with intensity of luminescence we must conclude that the evolution of light is dependent rather on an optimum than a maximum reaction velocity.
TABLE 10
Temperature and Light Production. The Oxidizer is Mixed with an Equal Amount of M/100 Pyrogallol + 3 per cent. H2O2
Oxidizer | Temperatures |
0-2° | 20° | 50° | 75° | 98-100° |
Turnip juice | Faint | Good | Good | Bright | Negative. |
1 per cent. blood extract | Faint | Fair | Good | | Fair. |
m/20 K4Fe(CN)6 | Negative | Good | Bright | | Good. |
m/100 KMnO4 | Fair | Good | Bright | Bright | Faint flash. |
m/50 K2Cr2O7 | Negative | Fair | Faint | Fair | Negative. |
m/100 CrO3 | Negative | Good | Bright | Bright | Faint. |
m/10 KCr alum | Negative | Faint | Faint | Faint | Negative. |
m/10 NH4Fe alum | Negative | Faint | Faint | Faint | Very faint. |
MnO2 | Negative | Fair | Fair | Fair | Negative. |
NaClO | Bright flash | Bright flash | Bright flash | | Fair flash. |
Quite a number of instances are known in which increasing the mass of reacting substances leads not to an increase but to an actual cessation of luminescence. This fact does not confirm the theory that reaction velocity is a determining factor in luminescence. The conditions for the luminescence of white phosphorus are most interesting and unusual. (See van't Hoff, 1895; Ewan, 1895; Centnerszwer, 1895; Russell,1903; Scharff, 1908.) Phosphorus will only begin to luminesce at a certain small pressure of oxygen. This "minimum luminescence pressure" of oxygen is very low, so low that earlier observers, failing to remove traces of oxygen, thought that luminescence might occur in absence of oxygen. Curiously enough there is also a "maximum luminescence pressure" of oxygen above which no luminescence occurs. Phosphorus will not luminesce in pure oxygen. Between the minimum and maximum is an "optimum luminescence pressure" where luminescence of the phosphorus is brightest. The exact values of these pressures vary with degree of water vapor present and with temperature. According to Abegg's Handbuch der anorganischen Chemie, the maximum luminescence pressure with water vapor present, is 320 mm. Hg at 0° and increases 13.19 mm. Hg for each degree rise in temperature. This means that for a definite temperature, say, 20°, phosphorus will not luminesce with an oxygen pressure of 583 mm. Hg, but will luminesce with pressures under this. If, however, we raise the temperature, luminescence will occur with an oxygen pressure of 583 mm. Hg.
A somewhat analogous case is presented by the oxidation of pyrogallol solution in contact with ozone, except that in this reaction too high a concentration of pyrogallol will hinder the oxidation. I have not studied the effect of varying concentrations of ozone. If oxygen, passed through an ozonizer (the silent electric discharge tube), is bubbled through m/100 pyrogallol, no luminescence occurs at 0°, a fair luminescence at 20°, a good luminescence at 50°, and a bright luminescence at the boiling point. If the pyrogallol is of m concentration, no luminescence occurs at 0° or 20°, a fair luminescence at 50°, and a bright luminescence at the boiling point. For a definite temperature, say 20°, no light appears if the pyrogallol is of m concentration, but if we raise the temperature, luminescence can occur. The similarity to phosphorus is obvious. Thus the "maximum luminescence pressure" of pyrogallol increases with increase of temperature.
We have already seen that pyrogallol can also be oxidized, if H2O2 is present, by a great variety of substances, such as peroxidases of potato or turnip juice, hÆmoglobin, KMnO4, K4Fe(CN)6, CrO3, MnO2, hypochlorites and hypobromites, or colloidal Pt and Ag. For convenience we may collectively speak of these as oxidizers. They are recorded in Table 13. No light occurs if H2O2is absent. In the case of some of these oxidizers pyrogallol will luminesce in dilute concentrations but not in strong. Also, dilute pyrogallol will luminesce with a dilute solution of oxidizer but not with a concentrated solution of oxidizer. The effect of rise in temperature in these cases also is to increase the "maximum luminescence concentration" of pyrogallol and the "maximum luminescence concentration" of oxidizer. Table 11 shows this effect of temperature with K4Fe(CN)6 and varying concentrations of pyrogallol, and Table 12 shows the effect of temperature with pyrogallol and varying concentrations of K4Fe(CN)6. Table 10 shows the relation between temperature and intensity of luminescence with pyrogallol and various oxidizers. The terms faint, fair, good, and bright are purely relative designations of brightness as estimated by the eye, for accurate measurements of weak intensities are very difficult to make.
From Table 10 it should be noted that the intensity of luminescence of pyrogallol oxidized with most oxidizers is actually less at the boiling point, a fact which I have repeatedly verified. Let us now see how these facts are to be explained. If we assume that luminescence is dependent on reaction velocity, the intensity of luminescence should increase with increasing temperature. Up to a certain limit this is what we find, but at temperatures above this limit the intensity of luminescence actually decreases. The duration of luminescence also decreases. There is an optimum temperature for luminescence in many cases and we can only conclude that luminescence depends not on a very rapid reaction velocity but on a certain definite reaction velocity. Assuming that this is true, how can we account for the anomalous fact that in high concentrations of oxygen, phosphorus will not luminesce or that in high concentrations of pyrogallol, there is no luminescence in presence of ozone or of oxidizer and H2O2. Of course with high active mass of oxygen (in case of phosphorous luminescence) or of pyrogallol (in case of pyrogallol luminescence) the reaction velocity must be greater than the optimum. If that is the case, then lowering the temperature should reduce the reaction velocity to the optimum and light should appear. However, as we have seen, not lowering but raising the temperature causes luminescence with high oxygen concentration or high pyrogallol concentration.
TABLE 11
Temperature, Concentration of Pyrogallol, and Light Production. An Equal Amount of m/20 K4Fe(CN)6 is Mixed with Pyrogallol + 3 per Cent H2O2
Concentration of pyrogallol (after mixing) | Temperatures |
0-2° | 10° | 20° | 30° | 50° | 75° | 98-100° |
m/4 | Negative | Negative | Good | Very faint | Faint | Fair | Faint |
m/40 | Negative | Faint | Faint | Faint | Good | Bright | Good |
m/400 | Faint | Fair | Good | Good | Good | Bright | Bright flash |
m/4,000 | Bright | Bright | Bright | Bright | Bright flash | Fair flash | Negative |
TABLE 12
Temperature, Concentration of Ferrocyanide and Light Production. An Equal Amount of K4Fe(CN)6 is Mixed with m/100 Pyrogallol + 3 Per Cent H2O2
Concentration of K4Fe(CN)6 exposed to light (after mixing) | Temperatures |
0-2° | 10° | 20° | 30° | 50° | 75° | 98-100° |
Half saturated at 20° C | Negative | Faint | Fair | Fair | Good | Good | Faint flash |
One-sixth saturated at 20° C | Very faint | Fair | Good | Good | Bright | Very bright | Good flash |
Table 13
Substances Giving Light with Pyrogallol and Hydrogen Peroxide
Equal volume added to mixture of 1 part M/100 pyrogallol or 1 part 3 per cent H2O2 + 1 part M/100 pyrogallol; hence, concentrations final mixture are one-half that given | Light with pyrogallol | Light with pyrogallol + H2O2 | Blueing of gum guaiac | Blueing of gum guaiac + H2O2 | Liberation of oxygen from H2O2 |
1 | Potassium ferrocyanide | (K4Fe(CN)6 M/10-M/20) | - | Bright | + | | + |
2 | Potassium ferricyanide | (K3Fe(CN)6 M/10-M/1,250) | - | Very faint to - | - | - | Very slow |
3 | Potassium chromate | (K2CrO4 M/20-M/100) | - | Good | + | | + |
4 | Potassium bichromate | (K2Cr2O7 M/50-M/100) | - | Good | + | | + |
5 | Potassium permanganate | (KMnO4 M/50-M/200) | - | Bright | + | - | + |
6 | Potassium hydroxide | (KOH M-M/6,250) | - | - | - | - | Very slow |
7 | Potassium chlorate | (KClO3 M/10) | - | - | - | - | - |
8 | Potassium persulfate | (K2S2O8 M/10-M/128) | - | - | - | - | - |
9 | Potassium chromium alum | (Cr2(SO4)3.K2SO4 M/10) | - | Faint | Very slow | Very slow | - |
10 | Ferric ammonium alum | (Fe2(SO4)3.(NH4)2SO4 M/10) | - | Faint | + | | Very slow |
11 | Ferric chloride | (FeCl3 M/10-M/250) | - | Fair | + | | Slow |
12 | Ferrous sulfate | (FeSO4 M/10-M/6,250) | - | Fair | - | + | Slow |
13 | Copper sulfate | (CuSO4 M/5-M/125) | - | - | - | + | Very slow |
14 | Chromic acid | (CrO3 M/100) | - | Bright | + | | + |
15 | Chromic sulfate | (Cr2(SO4)3 2 per cent) | - | Faint | - | + | Slow |
16 | Chlorine water | - | - | + | | + |
17 | Bromine water | - | - | + | | + |
18 | Iodine in KI | - | - | + | | + |
19 | Sodium hypochlorite | (Cl water + NaOH) | Faint flash Bright | + | | ++ |
20 | Sodium hypobromite | (NaOBr, bromine water + NaOH) | Faint flash Bright | + | | ++ |
21 | Sodium hypoiodite | (I in KI + NaOH) | - | Faint | + | | + |
22 | Calcium hypochlorite | (Ca(OCl)2 saturated solution) | - | Good | + | | ++ |
23 | Turnip juice | - | Bright | - | + | ++ |
24 | Turnip juice heated to 70° | - | Faint | - | + | Very slow |
25 | Turnip juice boiled | - | - | - | - | - |
26 | Albumin solution | - | - | - | - | - |
27 | Albumin solution + KMnO4 | - | Good | + | - | ++ |
28 | Albumin solution + KMnO4 boiled 1 min. and filtered (noprecipitate forms) | - | Good | + | - | ++ |
29 | Gelatin solution | - | - | - | - | - |
30 | Gelatin solution + KMnO4 | - | Good | - | - | ++ |
31 | Gelatin solution + KMnO4 boiled 1 min. and filtered (noprecipitate forms) | - | Good | + | - | ++ |
32 | Colloidal Ag | - | Bright | + | | + |
33 | Colloidal Pt | - | Bright | + | | + |
34 | Colloidal Fe(OH)2 (dilute) | - | - | - | + | - |
35 | Sodium nucleoproteinate (liver) | - | - | - | + | - |
36 | Sodium nucleoproteinate (mammary gland) | - | - | - | - | - |
37 | Sodium nucleate (yeast) | - | - | - | - | - |
38 | Squid blood (Sepia esculenta). Contains hemocyanin | - | Fair | | | ++ |
39 | Squid blood (Sepia esculenta) boiled | - | Good | | | - |
40 | Lobster blood (Palinurus japonicus). Contains hemocyanin and tetronerythrin, a lipochrome | - | Faint | | | ++ |
41 | Lobster blood (Palinurus japonicus) boiled | - | Fair | | | - |
42 | Annelid blood (Laonome japonica). Contains chlorocruorin | - | Good | | |
43 | Annelid blood (Laonome japonica) boiled | - | - | | |
44 | Luminous pennatulid extract (Cavernularia haberi) | - | - | - | + | ++ |
45 | Luminous ostracod extract (Cypridina hilgendorfii) | - | - | | | + |
46 | Luminous protozoan extract (Noctiluca miliaris) | - | - | - | - | - |
47 | Firefly (Luciola viticollis) extract, luminous organs | - | - | | | ++ |
48 | Ferrous ferrocyanide (Fe2Fe(CN)6) | - | Faint | + | | + |
49 | Zinc ferrocyanide (Zn2Fe(CN)6) | - | - | + | | Very slow |
50 | Chromic oxide (Cr2O3) | - | - | - | | Slow |
51 | Chromic hydroxide (Cr(OH)2) | - | - | - | Slow | + |
52 | Manganese dioxide (MnO2) | - | Good | Slow | Slow | ++ |
I believe the explanation of these phenomena lies rather in another direction and that the effect of the temperature and concentration of reacting substances affects not only the reaction velocity but also the reaction products. While intensity of luminescence undoubtedly increases with increasing reaction velocity, the luminescence itself probably accompanies only one stage in the formation of a series of oxidation products. This stage is favored at a definite temperature and mass of reacting substances. Thus, in the oxidation of phosphorus several intermediate oxides are said to be formed. The oxidation takes place in steps and probably the luminescence is connected with only one of the steps in a chain of reactions. It is probable that a certain oxygen pressure and temperature favors that particular step at the expense of the others and so this oxygen concentration and temperature correspond to the optimum for luminescence.
The supposition that certain definite oxidation products of pyrogallol must be formed in order to produce light is borne out by the fact that pyrogallol must be oxidized in a particular way to obtain luminescence. The blackening of pyrogallol with absorption of oxygen in presence of alkali is a very well-known reaction, but luminescence does not accompany this type of oxidation. I have tried mixing all concentrations of pyrogallol and all concentrations of alkali in an endeavor to obtain some light, but always with negative results. Likewise my attempts to obtain light during the electrolysis of salt solutions containing pyrogallol by means of the nascent oxygen at various kinds of anodes have met with negative results. A similar case is presented by luciferin which oxidizes spontaneously (most rapidly in presence of alkali) without light production and only produces light when oxidized in presence of luciferase.
To sum up the results of the dynamics of chemiluminescence we may say that certain oxyluminescences occur only if the substance is oxidized in a particular way under definite conditions of temperature and concentration and that this is probably due to a favoring of one step (with which the luminescence is associated) in a chain of oxidations. Providing temperature and concentration are such as to favor the step responsible for luminescence, then higher temperature and greater concentration result in increased intensity of luminescence.
Let us now turn to luminous organisms and consider the effect of temperature and of concentration of reacting substances (oxygen, luciferin and luciferase) on the luminescence. We have already seen that luminescence of a luciferin-luciferase mixture begins with an extraordinarily low oxygen tension and increases in intensity with increasing tension of oxygen, but that very soon an oxygen tension is reached where a maximum luminescence is obtained and further increase of oxygen tension gives no brighter light. In this respect the luminescence intensity—oxygen tension curve is no doubt very similar to the hÆmoglobin saturation—oxygen tension curve. HÆmoglobin is about 50 per cent. saturated at 10 mm. oxygen pressure, 80 per cent. saturated at 20 mm. oxygen pressure and completely saturated at pressures of oxygen well below the pressure of oxygen in air (152 mm. Hg). As the optimum oxygen tension for luminescence of luciferin is also well below that of air, mixtures of luciferin and luciferase luminesce with equal brilliancy whether air or pure oxygen is bubbled through them. To obtain an excess of oxygen it is only necessary to keep the solution saturated with air and statements regarding concentration of luciferin and luciferase and intensity or duration refer to excess of oxygen. Investigators who have studied the effect of increase in oxygen pressure on luminous animals have come to the same conclusions. High pressures of air or oxygen do not increase the intensity of luminescence (Dubois and Regnard, 1884).
The hydrogen ion concentration of crude solutions of luciferin and luciferase, made by extracting whole Cypridinas with hot or cold water is fairly constant, about Ph = 9, determined electrometrically. Such solutions have a high buffer value and the Ph does not change during oxidation of luciferin so that this variable is automatically controlled.
Because of difficulties in measuring low intensities of light which are constantly changing, no figures on light intensities can be given, but it is easy to establish the following facts: The greater the concentration of luciferin or luciferase the more intense the luminescence. The greater the concentration of luciferin the longer the duration of luminescence and the greater the concentration of luciferase, the shorter the luminescence lasts. Thus, if we mix concentrated luciferin and weak luciferase we get a bright light which lasts for a half hour or more, gradually growing more dim. Concentrated luciferase and weak luciferin give a bright flash of light which disappears almost instantly. Concentrated luciferase and concentrated luciferin give a brilliant light which lasts for an intermediate length of time and weak luciferin and weak luciferase give a faint luminescence which lasts for an intermediate length of time.
These facts can all be explained by regarding luciferase as a catalyzer which accelerates the oxidation of luciferin and by assuming that intensity of luminescence is dependent on reaction velocity, i.e., on rate of oxidation. Contrary to the condition for phosphorus and for pyrogallol there appears to be no optimum concentration of luciferase or luciferin, but the luminescence intensity increases gradually with increasing concentration of luminous substances up to the point where pure (?) luciferin and pure (?) luciferase, as secreted from the gland cells of the animal, come in contact with each other. This, the maximum brightness, is not to be compared with the light of an incandescent solid, but is nevertheless visible in a well-lighted room, out of direct sunlight.
The effect of temperature on Cypridina luminescence also bears out the preceding conclusions. For a given mixture of luciferin and luciferase the light becomes more intense with increasing temperature up to a definite optimum and then diminishes in intensity. The diminution in intensity above the optimum is due to a reversible change in the luciferase so that its active mass diminishes. This change becomes irreversible in the neighborhood of 70° (depending on various conditions), where coagulation of luciferase occurs. Light will appear at 0° but it is far less intense than light at higher temperatures and it is more yellow in color. The light of optimum temperatures is quite blue. The weaker light at temperatures above the optimum is also more yellow in color. I believe this difference in color is a function of the slowed reaction velocity, for a mixture of luciferin and luciferase which gives a bluish luminescence at room temperature, will give a weaker and yellowish luminescence if diluted with water. Dilution with water will slow the reaction velocity. If the difference in color were not real but due to change in color sensitivity of the eye with different intensities of such relatively weak light (Purkinje phenomenon), the weaker light should appear more blue. As the weaker light appears more yellow, I therefore believe the color difference is actual and not subjective.
A minimum, optimum, and maximum temperature for luminescence is observed in all luminous organisms. The minimum is usually very low. Luminous bacteria will still light at -11.5° C. The power to luminesce under ordinary conditions is not destroyed by exposure to liquid air, for, on raising the temperature, light again appears (Macfayden, 1900, 1902). Almost all organisms will luminesce at 0° C., and the luminescence minimum probably represents the point at which complete freezing of the luminous solution occurs. It is very low with bacteria because they are solutions in capillary spaces of very small size, a condition tending to lower the freezing point.
The luminescence maximum represents the point at which luciferase is reversibly changed so as to be no longer active. If the temperature is again lowered the luciferase again becomes active and light reappears. Some degrees above this, and in all forms well below the boiling point, luciferase is coagulated and destroyed. As the coagulation point of proteins depends on many factors, such as time of heating, salt content, acidity, etc., so the luciferases of different animals coagulate at different temperatures depending on these conditions. Some of the more reliable observations on these critical temperatures are collected in Table 14.
Table 14
Temperature Limits of Luminescence for Luminous Organism
Organism | Author and date | Minimum | Optimum | Maximum |
Pseudomonas javanica | Eijkman, 1892 | -20° | 25-33° | 45° |
Bacterium phosphorescens | Lehmann, 1889 | -12° | ... | 39.5° |
Bacterium phosphoreum | Molish, 1904, book | -5° | 16-18° | 28° |
Light bacteria | Tarchanoff, 1902 | -7° | 15-25° | 37° |
Light bacteria | Harvey, E. N., 1913 | -11.5 | 15-20° | 38° |
Mycelium X | Molish, 1904 | ... | 15-25° | 36° |
Lampyrids | Macaire, 1821 | -10 | 33° | 46-50° |
Pyrophorus noctilucus | Dubois, 1886 | ... | 20-25° | 47° |
Photuris pennsylvanica | Lund, 1911 | ... | ... | 50° |
Luciola viticollis | Harvey, E. B., 1915 | <0° | ... | 42° |
Cypridina hilgendorfii | Harvey, E. N., 1915 | <0° | ... | 52-54° |
Cyclopina gracilis | Lund, 1911 | ... | ... | 50° |
PhylirrhoË bucephalum | Panceri, 1872 | 44° | ... | 61° |
Pyrosoma | Panceri, 1872 | <0° | ... | 60° |
Mnemiopsis Leidyi | Peters, 1905 | 9° | 21° | 37° |
Noctiluca miliaris | Quatrefages, 1850 | 1° | ... | 40° |
Noctiluca miliaris | Harvey, E. B., 1917 | <0° | ... | 48° |
Cavernularia haberi | Harvey, E. N., 1915 | <0° | ... | 52° |
Watasenia scintillans | Shoji, R, 1919 | ... | 16-31° | 49° |
We are thus led to the conclusion that intensity of luminescence is dependent on the velocity of oxidation of luciferin and that with lowered reaction velocity the spectral composition of the light changes. The maximum emission shifts toward the yellow. I believe, however, that in Cypridina also, the luminescence intensity depends not only on reaction velocity but on the particular manner in which luciferin is oxidized. Cypridina luciferin will luminesce only in presence of Cypridina luciferase and no light can be obtained from Cypridina luciferin and a host of different oxidizers (with or without H2O2) such as are able to oxidize pyrogallol. Luciferin will also oxidize in the air spontaneously but no light is produced. It is easy to show that this spontaneous oxidation may be much more rapid than an oxidation with luciferase and yet light appears only in presence of the latter. If a concentrated solution of luciferin is kept near the boiling point it will be completely oxidized to oxyluciferin in four or five minutes. No light appears if air or even if pure oxygen is bubbled through it. The same solution kept at 20° with a small amount of luciferase will luminesce continuously and not be completely oxidized to oxyluciferin in a half hour. We can, however, cause the luciferin to oxidize as rapidly at 20° by adding concentrated luciferase as does the luciferin near the boiling point without luciferase. A bright light is produced in the former case, none in the latter case. The oxyluciferin formed from spontaneous oxidation of luciferin appears to be the same as that formed with luciferase present. Both give luciferin again on reduction. Perhaps the reaction takes place in two stages, similar to those supposed to occur in other enzyme actions:
luciferin + luciferase = luciferinluciferase
luciferinluciferase + O (or minus H2) = oxyluciferin + luciferase.
We may then assume as a tentative hypothesis that luminescence only occurs during oxidation (addition of O or removal of H) of the luciferinluciferase compound.
We have just seen that the effect of cooling a Cypridina extract containing luciferin and luciferase and luminescing with a bluish light, is to reduce the intensity and change the shade toward the yellow. Velocity of oxidation must be lowered and with the same concentration of luciferase lowered velocity means more light of the longer wave-lengths. A very instructive experiment on color of the light can be carried out with animals having different colored lights and so closely related that their luciferins and luciferases will interact with each other. Such a case is presented by the American fireflies, Photinus and Photuris. Photinus emits an orange light, while Photuris emits a greenish yellow light. The difference in color is especially noticeable when the luminous organs of the two forms are ground up in separate mortars. As shown by Coblentz, the difference in color is real, the spectrum of Photinus extending farther into the red than that of Photuris (see Fig. 8). We can easily prepare luciferin and luciferase from the two fireflies and make the following mixtures:
Photinus luciferin × Photinus luciferase = reddish light.
Photinus luciferin × Photuris luciferase = yellowish light.
Photuris luciferin × Photuris luciferase = yellowish light.
Photuris luciferin × Photinus luciferase = reddish light.
Thus the color of the light in these "crosses" is that characteristic of the animal supplying the luciferase. To bring this fact in line with what we have already said regarding reaction velocity and luminescence, we must believe that the Photinus luciferase oxidizes at a slower rate than the Photuris luciferase. In this connection it is of interest to recall that the Photuris light as emitted by the insect becomes reddish at high temperatures, or if the insect is plunged into alcohol, both conditions which bring about partial coagulation of the luciferase and reduce its active mass.
BIBLIOGRAPHY
A few of the enormous number of papers on luminescence are included in the list below. The attempt is made to list only those dealing with the structure, chemistry or physiology of luminous animals and the physical nature of their light, together with a small number of general interest. More complete works on light and luminescence come first and original articles follow. Authors' names are arranged alphabetically, their papers chronologically. A fairly complete list of literature covering the whole field of Bioluminescence is given by Mangold, 1910. The 1913 paper of Dubois gives a bibliography of his own contributions up to this date so that only those papers to which special reference is made are included below.
BOOKS AND GENERAL WORKS
Becquerel, E.: 1867, La LumiÈre.
Dahlgren, U.: 1915, The Production of Light by Animals. Jour. Franklin Inst., vols. 180 to date.
Dubois, R.: 1914, La Vie et La LumiÈre. Alcan, Paris.
Gadean de Kerville, H.: 1890, Les Vegetaux et les Animaux Lumineux. Paris.
Harvey, E. N.: 1917, The Chemistry of Light Production in Luminous Organisms. Carnegie Inst., Wash., Pub. No. 251, pages 171-234.
Heinrich, Pl.: 1811-1820, Die Phosphorescenz der KÖrper, etc. NÜrnburg.
Houstoun, R. A.: 1915, A Treatise on Light. London.
Kayser, H.: 1908, Handbuch der Spectroscopie. Vols. ii and iv. Leipzig.
Mangold, E.: 1910, Die Produktion von Licht. Hans Winterstein's Handbuch der vergleichende Physiologie, vol. iii, second half, pp. 225-392. Jena.
Molish, H.: 1904 and 1912, Leuchtende Pflanzen. Eine physiologische Studie. Jena.
Nutting, P. G.: 1912, Outlines of Applied Optics. Philadelphia.
Phipson, T. L.: 1870, Phosphorescence. L. Reeve and Co. London. 210 pages.
Shepard, S. E., 1914, Photochemistry. Longmans, Green and Co.
Original Papers
Abegg, R., and Auerbach, F.: 1907, Handbuch der anorganischen Chemie. Leipzig, vol. iii, pt. 3, p. 376.
Agassiz, A.: 1874, Embryology of the CtenophorÆ. Mem. Am. Ac. Arts and Science, x, p. 371.
Allman, G. I.: 1862, Note on the Phosphorescence of BeroË. Proc. Roy. Soc. Edinb., iv, 518.
Aubert et Dubois, R.: 1884, Sur les propriÉtÉs de la lumiÈre des pyrophores. Comp. rend. Acad. des Sc., vol. xcix, p. 477.
Bach, A.: 1911-1913, Zur Kenntnis der Reduktionsfermente. Biochem. Zeit, xxxi, 443; xxxiii, 282; xxxviii, 154; lii, 412-422.
Baker, J.: 1743-1753, The Microscope Made Easy and Employment for the Microscope.
Ballner, F.: 1907, Ueber das Verhalten von Leuchtbacterien bei der Einwirkung von Agglutinationsserum und anÆsthesierenden chemischen Agentien, etc. Centralb. f. Bact., 2 abt., xix, 572.
Bancroft, W. D.: 1913, The Chemical Production of Light. Journ. Frank. Inst., clxxv, 129.
Bancroft, W. D., and Weiser, H. B.: 1914-1915, Flame Reactions, I, II, III, IV. Jour. Phys. Chem., xviii, 213, 281, 762; xix, 310.
Bandrowski, E.: 1894-1895, Ueber Lichterscheinungen wÄhrend der Krystallisation. Zeit. Phys. Chem., xv, 323-326; xvii, 234-244.
Barcroft, J., and Hill, A. V.: 1910, The Nature of OxyhÆmoglobin with a Note on Its Molecular Weight. Journ. Physiol., xxix, pp. 411-429.
Barnard, J. E.: 1902, Luminous Bacteria. Nature, vol. lxv, p. 536.
Beijerinck, M. W.: 1889a, Le photobacterium luminosum, bactÉrie lumineuse de la mer du nord. Arch. NÉerlandaises, T. 23, p. 104.
Beijerinck, M. W.: 1889b, L'auxanographie ou la mÉthode de l'hydrodiffusion dans la gelatine appliquÉe aux recherches microbiologique. Arch. NÉerlandaises, vol. xxiii, p. 367.
Beijerinck, M. W.: 1889c, Les BactÉries lumineuses dans leur rapports avec l'oxygÈne. Arch. NÉerlandaises, T. 23, p. 416.
Beijerinck, M. W.: 1891, Sur l'aliment photogÈne et l'aliment plastique des bactÉries lumineuses. Arch. NÉerlandaises, T. 24, pp. 369-442.
Beijerinck, M. W.: 1902, Photobacteria as a Reactive in the Investigation of the Chlorophyll-function. Proceedings of Section of Sciences, Koninkl. Akad. van Wetenschappen te Amsterdam, vol. iv, p. 45.
Beijerinck, M. W.: 1915, Die Leuchtbacterien der Nordsee im August und September. Folia microbiologica, iv.
BlanchetiÈre: 1913, Oxydation et Luminescence. C. R. Ac. Sc., clvii, 118.
Bongardt, J.: 1903, BeitrÄge zur Kenntnis der Leuchtorgane einheimischer Lampyriden. Ztsch. f. wiss. Zool., Bd. 75, pp. 1 to 45.
Boyle, R.: 1667, Philo. Trans. Abridged Roy. Soc., 5th Ed., vol. ii (1722), p. 206, and iii (1749), p. 646.
Brauer, A.: 1904, Ueber die Knochenfische. Verhandl. Deutsch. Zool. Ges., vol. xiv, pp. 16-35.
Brauer, A.: 1906, Die Tiefseefische. I. Systematischer Teil. II. Anatomischer Teil. Wiss. Ergeb. der Valdivia-Exped. Jena.
Carradori, B.: 1798, Experiments and Observations on the Phosphorescence of the Luciole, Lampyris italica. Ann. d. Chemie, xxiv, pp. 96-101; Philos. Magazine, ii, pp. 77-80.
Carus: 1864, ExpÉriences sur la matiÈre phosphorescente de la Lampyris italica et action d'eau pour rendre À la matiÈre dessechÉe cette phosphorescence. C. R. Ac. Sc., lix, pp. 607-608.
Centnerszwer, M.: 1898, Ueber den Katalytischen Einfluss verscheidener Gase und DÄmpfe auf die Oxydation des Phosphors. Z. Physik. Chem., 26, pp. 1-46.
Chun, C.: 1893, Leuchtorgan und Facettenauge. Ein Beitrag zur Theorie des Sehens in grossen Meerstiefen. Biol. Ctbl., Bd. xiii, pp. 544-571.
Chun, C.: 1896, Atlantis. Biologische Studien Über pelagische Organismen, Chap. VI. Die Leuchtorgane der EuphausidÉn. Biblioth. Zool., vol. vii, H. 19, pp. 196-212.
Chun, C.: 1903, Ueber Leuchtorgane und Augen von Tiefsee-Cephalopoden. Verhandl. Dtsch. Zool. Ges., pp. 67-91.
Coblentz, W. W.: 1909, Notiz Über eine der Feuerfliege herrÜhrende fluorenzierende Substanz. Physik Zeit., x, pp. 955-956.
Coblentz, W. W.: 1912, A Physical Study of the Firefly. Publication No. 164, Carnegie Inst., Wash., D.C.
Coblentz, W. W., and Emerson, W. B.: 1917, Relative Sensibility of the Average Eye to Light of Different Colors and Some Practical Applications to Radiation Problems. Bur. Standards, Scient. Pap. No. 303.
Conroy, J.: 1882, The Spectrum of the Light Emitted by the Glowworm. Nature, vol. xxvi, p. 319.
Delepine, W. L.: 1910, Sur quelques composÉs organiques spontanement oxydables avec phosphorescence. C. R. Ac. Sc., vol. cl, pp. 876-878.
Dubois, R.: 1885, Fonction photogÉnique des Pyrophores. C. R. Soc. Biol., vol. xxxvii, 559-562.
Dubois, R.: 1886, Les ElatÉrides Lumineux. Bull. Soc. Zool. de France, vol. xi, pp. 1-275.
Dubois, R.: 1887a, De la fonction photogÉnique chez le Pholas dactylus. C. R. Ac. Sc., vol. cv, p. 690.
Dubois, R.: 1887b, Note sur la Fonction Photogenique chez les Pholades. C. R. Soc. Biol., pp. 564-567.
Dubois, R.: 1892, Anatomie et Physiologie ComparÉes de la Pholade Dactyle. Ann. d. Univ. Lyon, vol. ii, p. 1-155.
Dubois, R.: 1893, Sur le mÉcanisme de production de la lumiÈre chez Orya barbarica d'Algerie. C. R. Ac. Sc., Paris, July 17th.
Dubois, R.: 1896, Nouvelles Recherches sur la Production de la LumiÈre par les Êtres vivants. C. R. Soc. Biol., vol. xlviii, p. 995.
Dubois, R.: 1901a, Nouvelles recherches sur la BiophotogÉnÈse. C. R. Soc. Biol., vol. liii, p. 702.
Dubois, R.: 1901b, Luminescence obtenue par certains procÉdes organiques. C. R. Ac. Sc., vol. cxxxii, p. 431.
Dubois, R.: 1907, MÉcanisme Intime de la Formation de la Luciferine; analogies et homologies des organs de Poli et la glande hypobranchiale des Molluscs Purpurigenes. C. R. Soc. Biol., vol. lxii, p. 850.
Dubois, R.: 1913, MÉcanisme Intime de la Production de la lumiÈre chez les Organismes Vivants. Ann. Soc. Linn. de Lyons, vol. lx, pp. 81-97.
Dubois, R.: 1914a, De la Place OccupÉe par la BiophotogÉnÈse dans la Series des PhÉnomÈnes Lumineux. Ann. Soc. Linn. de Lyons, vol. lxi, pp. 247-256.
Dubois, R.: 1914b, Examen Critique de la Question de la BiophotogÉnÈse. Ann. Soc. Linn. de Lyons, vol. lxi, pp. 257-265.
Dubois, R.: 1916, Sur l'Anatomie de la glande PhotogÈne de Pholas dactylus. Ann. Soc. Linn. de Lyons, vol. lxiii, pp. 9-13.
Dubois, R.: 1917a, A propos de Quelques Recherches Recentes de M. Newton Harvey sur la BiophotogÉnÈse et du RÔle Important de la Preluciferine. C. R. Soc. Biol., December 22d.
Dubois, R.: 1917b, Etude Critique de Quelques Travaux Resents Relatif À la BiophotogÉnÈse. Ann. Soc. Linn. de Lyons, vol. lxiv, pp. 65-118.
Dubois, R.: 1918a, Sur la SynthÈse de la Luciferine. C. R. Ac. Sc., vol. clxvi, p. 578.
Dubois, R.: 1918b, Nouvelles Recherches sur la BiophotogÉnÈse. SynthÈse Naturelle de la Luciferine. C. R. Soc. Biol., vol. lxxxi, p. 317.
Dubois, R.: 1918c, Sur la LumiÈre Physiologique (Nouvelle reponse a M. Newton Harvey). C. R. Soc. de Biol., vol. lxxxi, p. 484.
Dubois, R.: 1919a, b, Symbiotes, Vacuolides, Mitrochondries et Leucites. C. R. Soc. Biol., vol. lxxxii, May 10th and July 26th.
Dubois, R.: 1919c, ReversibilitÉ de la fonction photogÉnique par l'hydrogÉnase de la pholade dactyle. C. R. Soc. Biol., vol. lxxxii, p. 840.
Dubois, R., et Regard, P.: 1884, Note sur l'action des hautes pressions sur la fonction photogÉnique du Lampyre. C. R. Soc. Biol., vol. xxxvi, pp. 675-676.
Ehrenberg, C. G.: 1831, Ueber einen neuen, das Leucten der Ostsee bedingenden, lebenden KÖrper. Poggendorffs Ann. d. Phys. und Chem., Bd., vol. xxiii, p. 147.
Ehrenberg, C. G.: 1834, Das Leuchten des Meers. Abhandl. d. Kgl. Akad. d. Wiss. Berlin, pp. 411-572.
Ehrenberg, C. G.: 1859, Ueber das Leuchten und ueber neue microskopische Leuchthiere des Mittelmeeres. Monatsber. d. Berliner Akad., pp. 727-791.
Eijkman, C.: 1892, Geneeskundig Tidschrift v. Ned. Ind., Deel, 32 Abl. 4, p. 109.
Eliot, C.: 1907-1915, Notes on a Collection of Nudibranchs from the Red Sea. Journ. Linn. Soc. London, vol. xxxi, p. 102.
Emery, C.: 1884, Untersuchungen ueber Luciola italica L. Ztschr. f. Wiss. Zool., Bd. xl, pp. 338-355.
Emmerling, O.: 1909, Hydrolyse der Meerleuchtinfusorien der Nordsee (Noctiluca miliaris). Biochem. Zt., vol. xviii, pp. 372-374.
Enders, H. E.: 1909, A Study of the Life History and Habits of ChÆtopterus variopedatus, Renier et ClaparÈde. Journ. Morph., vol. xx, pp. 479-532.
Ewan, T.: 1895, Ueber die Oxydationsgeschwindigkeit von Phosphor, Schweifel und Aldehyde. Zeit. physik. Chem., vol. xvi, pp. 315-343.
Exner, S.: 1903, Einige Beobachtungen ueber die durch Radiumstrahlen in den tierischen Geweben erzeugte Phosphoreszenz. Ctbl. f. Physiol., Bd. xvii, pp. 177-179.
Fabre, J. H.: 1855, Recherches sur la Cause de la Phosphorescence d'Agaric de L'Olivier. Ann. d. Sc. Nat., 4 ser., vol. iv, p. 179.
Fahrig, E.: 1890, The Phosphorescence Produced Upon the First Contact of Ozone with Certain Fluids. Chem. News, vol. lxii, pp. 39-40.
Falger, F.: 1908, Untersuchungen ueber das Leuchten von AcholoË astericola. Biol. Ctbl., Bd. xxviii, pp. 641-649.
Fischer, B.: 1888a, Ueber einen neuen lichtentwickelenden Spaltpilz. Ctbl. f. Bakt., Bd. iii, pp. 105 and 137.
Fischer, B.: 1888b, Bacterium Wachstum bei 0°. Ctbl. f. Bakt., Bd. iv, p. 89.
FÖrster, J.: 1887, Ueber einige Eigenschaften leuchtender Bakterien. Ctbl. f. Bakt., Bd. ii, p. 339.
FÖrster, J.: 1892, Ueber die Entwicklung von Bakterien bei niederer Temperatur. Centralbl. f. Bak., vol. xii, pp. 431-436.
FÖrster, J.: 1914, Ueber die Leuctorgane und das Nervensystem von Pholas dactylus. Zeit. f. wiss. Zool., vol. cix, pp. 349-393.
Forsyth, R. W.: 1910, The Spectrum of Bacterial Luminosity. Nature, vol. lxxxiii, p. 7.
Frankland, P.: 1898, The Action of Bacteria on the Photographic Plate. Ctbl. f. Bakt., 1st Abt. Bd. xxiv, pp. 609-612.
Friedberger, E., and Doepner, H.: 1907, Ueber den Einfluss von Schimmelpilzen auf die LichtintensitÄt in Leuchtbacterienkulturen, etc. Centralbl. f. Bakt., 1st Abt., xliii, p. 1.
Friend, H.: 1893, Luminous Earthworm. Nature, vol. xlvii, p. 462.
Fuchs, S.: 1891, Einige Versuche an der Leuchtorganen von Elater noctilucus. Centralbl. f. Physiol., vol. v, pp. 321-325.
Galloway and Welch: 1911, Studies on a Phosphorescent Bermudan Annelid, Odontosyllis enopla, Verrell. Trans. Amer. Micros. Soc., vol. xxx, pp. 13-39.
Geipel, E.: 1915, BeitrÄge zur Anatomie der Leuchtorgane tropischer KÄfer. Zeit. Wiss. Zool., vol. cxii, pp. 239-290.
Gernez, D.: 1905, Triboluminescence des composÉs MÉtalliques. C. R. Ac. Sc., vol. cxl, pp. 1134, 1234, 1337.
Giard, A.: 1890, Nouvelles recherches sur les bacteries lumineuses pathogÈnes. Comp. rend. soc. Biol., T. xlii, pp. 188-191.
Giard, A., and Billet, A.: 1889, Observations sur la Maladie phosphorescente des Talitres et Autres Crustaces. Compt. rend. soc. Biol., vol. 1, Ser. 9, p. 593.
Gibson, K. S., and McNicholas, H. J.: 1919, The Ultra-Violet and Visible Transmission of Eye-protective Glasses. Bureau of Standards. Tech. Papers No. 119.
Giesbrecht, W.: 1895, Ueber das Leuchten der pelagischen Copepoden und das tierische Leuchten im allgemeinen. Mitteil. d. Zool. St. Neapel, Bd. xi, pp. 648-694.
Giesbrecht, W.: 1896, Ueber den Stiz der Lichtentwicklung in den PhotosphÄrien der Euphausiiden. Zool. Anz., Bd. xix, pp. 486-490.
Goss, B. C.: 1917, Light Production at Low Temperatures by Catalysis with Metal and Metallic Oxide Hydrosols. Journ. Biol. Chem., vol. xxxi, pp. 271-279.
Greef, R.: 1882, Ueber die rosettenfÖrmigen Leuchtorgane der Tomopteriden und zwei neue Arten von Tomopteris. Zool. Anz., Bd. v, pp. 384-387.
Greene, C. W.: 1899, The Phosphorescent Organs in the Toad Fish, Porichthys natatus, Girard. Jour. of Morph., vol. xv, pp. 667-684.
Guinchant: 1905, Sur la triboluminescence de l'acide arsenieux. C. R. Ac. Sc., vol. cxl, p. 1170.
Handrick, K.: 1901, Zur Kenntnis des Nervensystems und der Leuchtorgane von Argyropelecus hemigymnus. Zoologica, Bd. xiii, Heft. 32, pp. 1-68.
Hankel, W.: 1862, Notiz ueber Phosphorisches Leuchten des Fleisches. Ann. d. Phys. u. Chem., Bd. cxv, p. 62.
Hansen, H. J.: 1903, On the Crustaceans of the Genera Petalidium and Sergestes from the "Challenger," with an Account of Luminous Organs in Sergestes challengeri n. Sp. Proc. Zool. Soc., London, 1903, vol. i, pp. 52-77.
Harvey, E. B.: 1917, A Physiological Study of Specific Gravity and Luminescence in Noctiluca, with Special Reference to AnÆsthesia. Pub. No. 251, Carneg. Inst., Wash., pp. 235-253.
Harvey, E. N.: 1913, The Temperature Limits of Phosphorescence of Luminous Bacteria. Biol. Bull., vol. ii, pp. 456-457.
Harvey, E. N.: 1914, On the Chemical Nature of the Luminous Material of the Firefly. Science N. S., vol. xl, pp. 33-34.
Harvey, E. N.: 1915a, Experiments on the Nature of the Photogenic Substance in the Firefly. Jour. Am. Chem. Soc., vol. xxxvii, pp. 396-401.
Harvey, E. N.: 1915b, Studies on Light Production by Luminous Bacteria. Am. Jour. Physiol., vol. xxxvii, pp. 230-240.
Harvey, E. N.: 1915c, The Effect of Certain Organic and Inorganic Substances Upon Light Production by Luminous Bacteria. Biol. Bull., vol. xxix, pp. 308-312.
Harvey, E. N.: 1916a, The Mechanism of Light Production in Animals. Science N. S., vol. xliv, pp. 208-209.
Harvey, E. N.: 1916b, Studies on Bioluminescence. II. On the Presence of Luciferin in Luminous Bacteria. Am. Jour. Physiol., vol. xli, pp. 449-454.
Harvey, E. N.: 1916c, Studies in Bioluminescence. III. On the Production of Light by Certain Substances in the Presence of Oxidases. Am. Jour. Physiol., vol. xli, pp. 454-464.
Harvey, E. N.: 1916d, The Light-producing Substances, Photogenin and Photophelein of Luminous Animals. Science N. S., vol. xliv, pp. 652-654.
Harvey, E. N.: 1917a, Studies on Bioluminescence. IV. The Chemistry of Light Production in a Japanese Ostracod Crustacean Cypridina hilgendorfii, Muller. Amer. Jour. Physiol., vol. xlii, pp. 318-341.
Harvey, E. N.: 1917b, V. The Chemistry of Light Production by the Firefly, Id., pp. 342-348.
Harvey, E. N.: 1917c, VI. The Light Production in a Japanese Pennatulid, Cavernularia haberi, Id., pp. 349-358.
Harvey, E. N.: 1917d, What Substance is the Source of Light in the Firefly? Science N. S., vol. xliv, pp. 241-243.
Harvey, E. N.: 1917e, Studies on Bioluminescence. VIII. The Mechanism of the Production of Light during Oxidation of Pyrogallol. Jour. Biol. Chem., vol. xxxi, pp. 311-336.
Harvey, E. N.: 1918, Studies on Bioluminescence. VII. Reversibility of the Photogenic Reaction in Cypridina. Jour. Gen. Physiol., vol. i, pp. 133-145.
Harvey, E. N.: 1919a, Studies on Bioluminescence. IX. Chemical Nature of Cypridina Luciferin and Cypridina Luciferase. Jour. Gen. Physiol., vol. i, pp. 269-293.
Harvey, E. N.: 1919b, Studies on Bioluminescence. X. Carbon Dioxide Production during Luminescence of Cypridina Luciferin. Jour. Gen. Physiol., vol. ii, pp. 133-135.
Harvey, E. N.: 1919c, XI. Heat Production during Luminescence of Cypridina Luciferin. Id., vol. ii, pp. 137-143.
Harvey, E. N.: 1920, Studies on Bioluminescence, XII. Id., ii, 207-213.
Heinemann, C.: 1872, Untersuchungen ueber die Leuchtorgane der bei Vera-Cruz vorkommenden LeuchtkÄfer. Arch. f. mikr. Anat., Bd. viii, pp. 461-471.
Heinemann, C.: 1873, Aschenanalyse von Leuchtorganen mexikanischer Cucujos. PflÜger's Arch., Bd. vii, pp. 365-367.
Heinemann, C.: 1886, Zur Anatomie und Physiologie der Leuchtorgane mexikanischer Cucujos. Archiv f. Mikr. Anat., Bd. xxvii, pp. 296-382.
Heller, J. Florian: 1853 u. 1854, Ueber das Leuchten im Pflanzen-und Tierreiche. Arch. f. Physiol. u. Pathol. Chem. u. Mikrosk., mit bes. RÜcksicht auf med. Diagnost. u. Therapie Wien., N. F., Bd. vi, pp. 44, 81, 121, 161, 201, 241.
Henneberg, W.: 1899, Leuchtbacterien als Krankheitserreger bei SchwammÜcken. Centralbl. f. Bakt., 1st Abt. xxv, pp. 649-650.
Hoyle, W. F.: 1902, The Luminous Organs of Ptergioteuthis margaritifera, Mediterranean Cephalopod. Manchester Mem., vol. xlvi, No. 16.
Hulme, N.: 1800, Experiments and Observations on the Light Which is Spontaneously Emitted with Some Degree of Permanency from Various Bodies. Phil. Trans. Roy. Soc., pp. 161-187.
Hyde, E. P., Forsyth, W. E. and Cady, F. E.: 1918, The Visibility of Radiation. Astrophys. Journ., vol. xlviii, pp. 65-88.
Hyde, E. P., Forsyth, W. E., and Cady, F. E.: 1919, A New Experimental Determination of the Brightness of a Black Body and of the Mechanical Equivalent of Light. Physical Review, vol. xii, pp. 45-58.
Ishikawa, C.: 1913, Einige Bemerkungen ueber den leuchtenden Tintenfisch, Watasenia Nov. Gen. (Abraliopsis der Autoren) scintillans, Berry, aus Japan. Zool. Anz., 1913, vol. xliii, pp. 162-172.
Issatschenko, B.: 1903, Quelques expÉriences avec la lumiÈre bactÉrienne. Ctbl. f. Bakt., Abt. 2, Bd. x, pp. 497-499.
Issatschenko, B.: 1907, Zur Erforschung des Bakterienlichtes. Centralb. f. Bakt., Bd. xix, pp. 116-117.
Issatschenko, B.: 1911, Erforschung des bakterielle Leuchten des Chironomus (Diptera). Bull. d. jard. imp. botan. St. Petersburg, vol. xi, p. 42.
Ives, H. E.: 1910, Further Studies of the Firefly. Physical Rev., vol. xxxi, pp. 637-651.
Ives, H. E.: 1915, The Total Luminous Efficiencies of Present-day Illuminants. Physical Rev., Ser. 2, vol. v, p. 390.
Ives, H. E., and Coblentz, W. W.: 1910, Luminous Efficiency of the Firefly. Bull. Bur. Stand., Wash., D. C., vol. vi, pp. 321-336.
Ives, H. E., and Luckiesh, M.: 1911, The Effect of Red and Infra-red on the Decay of Phosphorescence in Zinc Sulphide. Astrophys. Journ., vol. xxxiv, pp. 173-196.
Johann, L.: 1899, Ueber eigentÜmliche epitheliale Gebilde (Leuchtorgane) bei Spinax niger. Ztschr. f. wiss Zool., Bd. lxvi, pp. 136-160.
Joubin, L.: Note sur l'appareil photogÈne d'un cephalopode (Histioteuthis Rupelii). Compt. rend. soc. Biol., 1893, pp. 142-146.
Jourdan, Et.: 1885, Structure des Élytres de quelques PolynoËs. Zool. Anz., Bd. viii, pp. 128-134.
Jourdan, Et.: 1887, Structure histologique des tÉguments et des appendices sensitifs de l'Hermione hystÉrix et du PolynoË Grubiana. Arch. Zool. ExpÉr., 1887, 2nd ser., T. v, pp. 91-122.
Jousset, de Bellesme: 1880, Recherches expÉrimentales sur la phosphorescence du lampyre. Jour. de l'anat. et de la Physiol., T. xvi, pp. 121-169.
Kastle, J. H., and McDermott, F. A.: 1910, Some Observations on the Production of Light by the Firefly. Amer. Jour. Physiol., vol. xxvii, pp. 122-151.
Katz, O.: 1891, Zur Kenntnis der Leuchtbakterien. Centralb. f. Bak., pp. 9, 157, 199, 229, 258, 311, 343.
Kemp, S.: 1910, Notes on the Photophores of Decapod Crustacea. Proc. Zool. Soc., London, pp. 639-651.
Knab, F.: 1909, Luminous Termite Hills. Science, vol. xxx, pp. 574-575.
KÖlliker, A. V.: 1858, Ueber die Leuchtorgane von Lampyriden. Verh. d. Phys. Med. Ges., WÜrzburg, Bd. viii, pp. 217-224.
KÖlliker, A. V.: 1859, Ueber die Leuchtorgane der amerikanischen Pyrophorus-Arten. Verh. d. Phys. Med. Ges., Stiz. ber., WÜrzburg, Bd. ix, p. 28.
Krunkenberg, F. C. W.: 1887, Neue Tatsachen fÜr eine vergleichende Physiologie der Phosphorescenzerscheinungen bei Tieren und bei Pflanzen. Vergl. Physiol. Studien, Heidelberg, II Reihe, 4th Abt., pp. 77-142.
Kutscher, F.: 1897, Zur Physiologie der Phosphorescenz. Ztschr. f. Physiol. Chem., 1897, Bd. xxiii, pp. 109-113.
Kutscher, F.: 1909, Die Leuchtorgane von ArcholoË astericola. Ztschr. f. wiss. Zool., Bd. xcii, pp. 75-102.
Langley, S. P., and Very, F. W.: 1890, On the Cheapest Form of Light from Studies at the Allegheny Observatory. Amer. Jour. of Sc., 3rd series, vol. xl, p. 97. Also Smiths. Miscell. Coll., xli, 1901.
Langley, S. P.: 1902, Ann. Astrophys. Obs., vol. ii, p. 5.
Lankester, E. Ray: 1867, Preliminary Notice of Some Observations with the Spectroscope on Animal Substances. Jour. of Anat. and Physiol., vol. ii, p. 116.
Lehmann, K. B.: 1889, Studien ueber Bacterium phosphorescens, Fischer. Ctbl. f. Bakt., Bd. v, p. 785.
Lenard, P., and Wolf, M.: 1888, Lumineszenz der PyrogallussaÜre. Ann. Phys. u. Chem., 1888, N. F. xxxiv, pp. 918-925.
Lendenfeld, R.: 1887, Die Leuchtorgane der Fische. Biol. Ctbl., Bd. vii, pp. 609-621.
Linnemann, E.: 1858, Phosphorescenz des Kaliums und Natriums. J. f. Prac. Chem., vol. lxxv, p. 128.
Lode, A.: 1904, Versuche, die optische LichtintensitÄt bei Leuchtbakterien zu bestimmen. Ctbl. f. Bakt., I Abt., Orig., Bd. xxxv, pp. 524-527.
Lode, A.: 1908, Experimente mit Leuchtbakterien. Referate. Centralb. f. Bakt., 2nd Abt., vol. xxii, p. 421.
Ludwig, F.: 1874, Ueber die Phosphorescenz der Pilze und des Holzes. Diss. GÖttingen, 30 pages.
Ludwig, F.: 1884, Ueber die Spektroskopische Untersuchung photogener Pilze. Zeit. wiss. Mikr., vol. i, pp. 181-190.
Ludwig, F.: 1887, Die bisherigen Untersuchungen ueber photogene Bakterien. Centralb. f. Bakt., vol. ii, pp. 372 and 401.
Ludwig, F.: 1901, Phosphorezierende TausendfÜssler und die LichtfÄule des Holzes. Centralb. f. Bakt., Abt. II., Bd. vii, pp. 270-274.
Lund, E. J.: 1911, On the Structure, Physiology and Use of Photogenic Organs, with Special Reference to the LampyridÆ. Journ. Exp. Zool., vol. xi, pp. 415-467.
Macaire, J.: 1821, MÉmoire sur la phosphorescence des Lampyres. Ann. d. Chimie et Phy., T. xvii, pp. 151-167.
Macaire, J.: 1822, Ueber die Phosphorescenz der LeuchtkÄfer. Gilbert's Annal. d. Physik., T. lxx, pp. 265-280.
Macaire, J.: 1822, On the Phosphorescence of Luminous Insects. Quarterly Journ. Science, Lit. and Art, vol. xii, pp. 181-182.
Macartney, J.: 1810, Observations on Luminous Animals. Philos. Transact., vol. c, pp. 258-293.
Macfadyen, A.: 1900, On the Influence of the Temperature of Liquid Air on Bacteria. Proc. Roy. Soc., London, vol. lxvi, p. 180.
Macfadyen, A.: 1902, On the Influence of the Prolonged Action of Liquid Air on Micro-organisms and the Effect of Mechanical Trituration at the Temperatures of Liquid Air on Photogenic Bacteria. Proc. Roy. Soc., vol. lxxi, p. 76.
MacÉ: 1887, Les glandes prÉanales et la phosphorescence des gÉophiles. Comp. rend. soc. Biol., pp. 37-39.
Mangold, E.: 1907a, Ueber das Leuchten der Tiefseefische. PflÜger's Arch., Bd. cxix, pp. 583-601.
Mangold, E.: 1907b, Leuchtende Schlangensterne und die Flimmerbewegung bei Ophiopsila. PflÜger's Arch., Bd. cxviii, pp. 613-640.
Massart, J.: 1893, Sur l'irritabilitÉ des Noctiluques. Bull. scientifique de la France et de la Belgique, T. 25.
Mast, S. O.: 1912, Behavior of Fireflies (Photinus ardens?), with Special Reference to the Problem of Orientation. Jour. Animal Behavior, vol. ii, pp. 256-272; also Science, vol. xxxv, p. 460.
Matteuci, C.: 1843, Sur la phosphorescence du lampyre d'Italie (L. italica). C. R. Ac. Sc., vol. xvii, pp. 309-312.
McDermott, F. A.: 1910-1917, Observations on the Light Emission of American LampyridÆ. Canad. Entomol., 1910, vol. xlii, pp. 357-363; 1911, vol. xliii, pp. 399-406; 1912, vol. xliv, p. 73; 1912, vol. xliv, p. 309; 1917, vol. xlix, pp. 53-61.
McDermott, F. A.: 1911a, Luciferesceine, the Fluorescent Material Present in Certain Luminous Insects. Jour. Amer. Chem. Soc., vol. xxxiii, pp. 410-416.
McDermott, F. A.: 1911b, The Stability of the Photogenic Material of the LampyridÆ and Its Probable Chemical Nature. Journ. Amer. Chem. Soc., vol. xxxiii, pp. 1791-1796.
McDermott, F. A. and Crane, C. G.: 1911c, A Comparative Study of the Structure of the Photogenic Organs of Certain American LampyridÆ. Amer. Nat., vol. xlv, pp. 306-313.
McDermott, F. A.: 1911d, Some Observations on a Photogenic MicroÖrganism, Pseudomonas Lucifera, Molish. Proc. Biol. Soc., Wash., vol. xxiv, pp. 179-184.
McDermott, F. A.: 1911e, Recent Advances in Our Knowledge of the Production of Light in Living Organisms. Smithsonian Rep., pp. 345-362; also Sci. Amer. Suppl., No. 1842, pp. 250-251.
McDermott, F. A.: 1913, Chemiluminescent Reactions with Physiologic Substances. Journ. Am. Chem. Soc., vol. xxxv, pp. 824-826.
McDermott, F. A.: 1915, Experiments on the Nature of the Photogenic Processes in the LampyridÆ. Journ. Amer. Chem. Soc., vol. xxxvii, pp. 401-404.
McKenney, R. B.: 1902, Observations on the Conditions of Light Production in Luminous Bacteria. Proc. Biol. Soc., Wash., vol. xv, pp. 213-234.
McIntosh, W. C.: 1885, Address on Phosphorescence of Marine Animals. Nature, vol. xxxii, pp. 476-481.
Meyer, W. Th.: 1906, Ueber das Leuchtorgan der Sepiolini. Zool. Anz., Bd. xxx, pp. 388-392.
Michaelis, G. A.: 1830, Ueber das Leuchten der Ostsee nach eigenen Beobachtungen. Hamburg.
Molisch, H.: 1905, Luminosity in Plants. Ann. Rept. Smithsonian Inst., pp. 351-362 (No. 1685).
Moore, B.: 1908, Observations on Certain Organisms of (a) Variations in Relation to Light and (b) a Diurnal Periodicity of Phosphorescence. Biochemical Jour., vol. iv, pp. 1-29.
Muraoka, H.: 1896, Das JohanniskÄferlicht. Wiedemann's Ann. d. Physik., N. F., Bd. lix, pp. 773-781.
Muraoka, H.: 1897, Das JohanniskÄferlicht. Journ. of the Coll. of Science, Univ. Japan, vol. ix, p. 129.
Nadson, G.: 1902, Sur la phosphorescence des Bacteries. Rapport fait À la Soc. Microbiologie, St. Petersbourg, March 29th.
Nadson, G.: 1903, Sur la phosphorescence des Bacteries. Bull. du jardin Imper. botan. de St. Petersbourg, T. iii, pp. 110-122.
Nadson, G.: 1908, Zur Physiologie der Leuchtbacterien. Bull. Jard. Imp. Bot. de St. Petersbourg, vol. viii, p. 144.
Nichols, E. L., and Merritt, E.: 1912, Studies in Luminescence. Pub. Carneg. Inst., Wash., No. 152, pp. 1-223.
Nutting, C. C.: 1907, The Theory of Abyssal Light. Proc. Seventh Internat. Zool. Cong., Boston, pp. 889-899.
Nutting, P. G.: 1908, The Luminous Equivalent of Radiation. Bull. Bur. Standards, Washington, D. C., vol. v, pp. 261-039.
Nutting, P. G.: 1911, The Visibility of Radiation, a Recalculation of Konig's Data. Bull. Bur. Standards, Washington, D. C., vol. vii, pp. 235-243.
Osborne, T. B. and Wakeman, A. J.: 1918, Some New Constituents of Milk. A New Protein Soluble in Alcohol. J. Biol. Chem., vol. xxxiii, p. 243.
Oshima, H.: 1911, Some Observations on the Luminous Organs of Fishes. Jour. Coll. Sc., Tokio, vol. xxvii.
Otto, M.: 1896, Sur l'ozone et les phÉnomÈnes de phosphorescence. C. R. Ac. Sc., vol. cxxlii, p. 1005.
Owsjannikow, P.: 1864-1868, Zur Kenntnis der Leuchtorgane der Lampyris noctiluca. Mem. Ac. St. Petersb., Ser. 2, vol. xi; also Bull. Ac. So., 1864, vol. viii.
Panceri, P.: 1872, Etudes sur la phosphorescence des animaux marins. Ann. d. Sc. Nat., 5 Ser. Zool., T. xvi.
Panceri, P.: 1877, Luminous CampanulariÆ. Nature, vol. xvi, p. 30.
Pasteur: 1864, Sur la lumiÈre phosphorescente des Cucujos. Comp. rend. Acad. Sc., T. lix, p. 509.
Peron, F.: 1804, MÉmoire sur le nouveau genre Pyrosoma. Ann. du Mus. d'hist. Nat., vol. iv, 437-446.
Peters, A. W.: 1905, Phosphorescence in Ctenophores. Journ. of Exper. Zool., vol. ii, p. 103
PflÜger, E.: 1875a, Die Phosphorescenz lebendinger Organismen und ihre Bedeutung fÜr die Principien der Respiration. Arch. f. die ges. Physiol., vol. x, p. 275.
PflÜger, E.: 1875b, Ueber die Phosphorescenz verwesender Organism. Arch. f. d. ges. Physiol., Bd. xi, pp. 222-263.
Phipson, T. L.: 1860, Sur la matiÈre phosphorescente de la raie. Compt. rend. Acad. d. Sc., T. li, p. 541.
Phipson, T. L.: 1872, Sur la noctilucine. C. R. Ac. Sc., T. lxxv, p. 547.
Phipson, T. L.: 1876, On Noctilucine, the Phosphorescent Principle of Luminous Animals. Journ. Franklin Inst., vol. ci, pp. 68-72.
Pierantoni, Umberto: 1918, Les microÖrganismes physiologiques et la luminescence des animaux. Scientia, vol. xxiii, p. 43.
Polimanti, Oswald: 1911, Ueber das Leuchten von Pyrosoma elegans Les. Zeitschrift f. Biol., vol. lv, pp. 505-529.
Pope, W. J.: 1899, On Triboluminescence. Nature, vol. lix, p. 618.
Prevost, BÉnÉdict: 1810, ConsidÉrations sur le brillant des yeux du chat et de quelques autres animaux. Bibl. Britt. Sc. et Arts, vol. xlv, pp. 196-212.
PÜtter, A.: 1905, Leuchtende Organismen. Ztschr. f. Allg. Physiol., Bd. v, Sammelreferate, pp. 17-53.
Quatrefages, A. de: 1843, Note sur un nouveau mode de phosphorescence observÉ chez quelques Annelides et Ophiures. Ann. d. Sc. Nat., 2nd ser., Zool., T. xix, pp. 183-192.
Quatrefages, A. de: 1850, Observations sur les noctiluques. Ann. d. Sc. Nat., 3rd Ser., Zool., T. xiv, pp. 226-235.
Quatrefages, A. de: 1850, MÉmoire sur la phosphorescence de quelques invertÉbrÉs marins. Ann. d. Sc. Nat., 3 ser., Zool., T. xiv, pp. 236-281.
Quatrefages, A. de: 1862, The Phosphorescence of the Sea. Popular Sc. Rev., vol. i, pp. 275-298.
Radziszewski, B.: 1877, Untersuchungen ueber Hydrobenzamid, Amarin und Lophin. Ber. d. d. chem. Ges., vol. x, pp. 70-75 and pp. 321-322.
Radziszewski, B.: 1880, Ueber die Phosphorescenz der organischen und organisierten KÖrper. Liebigs Ann., Bd. 203, pp. 305-336.
Radziszewski, B.: 1883, Zur Theorie der Phosphorescenzerscheinungen. Ber. d. d. Chem. Ges., vol. xvi, pp. 597-601.
Reeves, P.: 1917, The Minimum Radiation Visually Perceptible. Commun. No. 51, Research Lab. Eastman Kodak Co., pp. 167-174.
Reichensperger, A.: 1908, Ueber Leuchten von Schlangensternen. Biol. Ctbl., Bd, xxviii, p. 166-169.
Reinelt, J.: 1906, BeitrÄge zur Kenntnis einiger Leuchtbacterien. Centralb. f. Bakt., vol. xv., pp. 289-300.
Reinke, J.: 1898, Ueber das Leuchten von Ceratium tripos. Wiss. Meeresunters., herausgeg. V. d. Kommiss. z. wiss. Unters. d. deutsch. Meers. in Kiel u. d. Biol. Station auf Helgoland, N. F., Bd. iii, Abt. Kiel, p. 37.
Richter, O.: 1906, Chlorophyllbildung im Bakterienlichte. Sitz. ber. d. k. k. Akad. d. Wiss. Wien. Math. nat. Kl., Bd. 115, i, p. 298.
Robin, Ch. et Laboulbene, A.: 1873, Sur les organes phosphorescents thoraciques et abdominals du Cocuyo de Cuba (Pyrophorus noctilucus, L.). Compt. rend. Acad. d. Sc. Paris, T. lxxvii, pp. 511-517.
Russell, W. J.: 1897, On the Action Exerted by Certain Metals and Other Substances on a Photographic Plate. Proc. Roy. Soc., vol. lxi, pp. 424-433.
Russell, E. J.: 1903, The Reaction between Phosphorus and Oxygen, Part I. Jour. Chem. Soc., vol. lxxxiii, pp. 1263-1284.
Sasaki, M.: 1914, Observations on Hotaru-ika, Watasenia scintillans. Jour. Coll. Agric. Sapporo, Japan, vol. vi, pp. 75-105.
Scharff, E.: 1908, Ueber das Leuchten des Phosphors und einiger Phosphorverbindungen. Zeit. physik. Chem., vol. lxii, pp. 179-193.
Schmidt, P.: 1894, Ueber das Leuchten der ZuckmÜcken (ChironomidÆ). Zool. Jahrb. Abth. Syst., 8 Bd., pp. 58-66. Trans. in Ann. Mag. Nat. Hist., (6), vol xv, pp. 133-141.
Schultze, C. A. S.: 1886, Beobachtungen an Noctiluca. Arch. f. Mikrosk. Anat., Bd. ii, p. 163.
Schultze, Max: 1865, Zur Kenntnis der Leuchtorgane von Lampyris splendidula. Arch. f. mikrosk. Anat., Bd. i, pp. 124-137.
Schurig, W.: 1901, Biologische Experimente nebst ein Einhang Microscopische Technik. Leipzig, p. 131.
Shoji, R.: 1919, A Physiological Study on the Luminescence of Watasenia scintillans (Berry). Amer. Jour. Physiol., vol. xlvii, pp. 534-557.
Singh, P., and Maulik, S.: 1910, Nature of Light Emitted by Fireflies. Nature, vol. lxxxviii, p. 111.
Sokolow, Iwan: 1909, Zur Frage Ueber das Leuchten und die DrÜsengebilde der Ophiuren. Biol. Ctbl., Bd. xxix, pp. 637-648.
Spallanzani, Lazzaro: 1794, Memoria sopra le Meduse fosforiche. Mem. Soc. Ital. Verona, vol. vii, pp. 271-290.
Steche, O.: 1908, Beobachtungen ueber das Leuchten tropischer Lampyriden. Zool. Anz., Bd. xxxii, pp. 710-712.
Steche, O.: 1909, Ueber die Leuchtorgane von Anomalops katoptron und Photoblepharon palpebratus, zwei OberflÄchenfischen aus dem Malaysichen Archipel. Ein Beitrag zur Morph. u. Physiol. der Leuchtorgane der Fische. Ztschr. f. wiss. Zool., Bd. xciii, pp. 349-408.
Sterzinger, I.: 1907, Ueber das LeuchtvermÖgen von Amphiura squamata, Sars. Ztschr. f. wiss. Zool., Bd. lxxxviii, pp. 358-384.
StÜbel, H.: 1911, Die Fluorescence tierische Gewebe in ultra-violett Licht. Arch. f. d. ges. Physiol, vol. cxlii, pp. 1-14.
Suchsland, E.: 1898, Physikalische Studien ueber Leuchtbakterien. Festschr. d. 200-jÄhr. Jubelfeier der Franckeschen Stiftungen, Halle, p. 87. Ref. in Zentralb. f. Bact., II Abt. iv, pp. 713-715.
Tarchanoff, J.: 1901, LumiÈre des bacilles phosphorescents de la mer Baltique. Compt. rend. Acad. d. Sc. Paris, 1901, T. cxxxiii, pp. 246-249.
Tarchanoff, J.: 1902, Biologisch-chemische Untersuchungen der Phosphorescierenden Bakterien. (Russ.). Journ. med. chim. St. Petersbourg, Bd. xxv-xxvi, pp. 56-74.
Terao, A.: 1917, Notes on Photophores of Sergestes prehensilis, Bate. Annot. Zool. Japan, vol. ix, pp. 299-316.
Thomas, R. H.: 1902, A Luminous Centipede. Nature, vol. lxv, p. 223.
Tollhausen, P.: 1889, Untersuchungen ueber Bacterium phosphorescens Fischer. Diss. WÜrzburg.
Tommasino, Th.: 1904, Constatation d'une radioactivitÉ propre aux Êtres vivants, vegetaux et animaux. Compt. rend. Acad. d. Sc., Bd. cxxxix, pp. 730-731.
Townsend, A. B.: 1904, Histology of the Light Organs, of Photinus marginellus. Amer. Nat., 1904, vol. xxxviii, pp. 127-151.
Trautz, M.: 1904, Ueber neue Lumineszenzerscheinungen. Zeit. wiss. Photogr., vol. ii, pp. 217-223; also, Zeit. f. Electrochem., vol. x, pp. 593-597.
Trautz, M.: 1905, Studien ueber Chemilumineszenz. Ztschr. physikal. Chem., vol. liii, pp. 1-111.
Trautz, M., and Schorigin, P.: 1905a, Kristallolumineszenz und Tribolumineszenz. Zeit. wiss. Photog., vol. iii, pp. 80-90.
Trautz, M., and Schorigin, P.: 1905b, Ueber Chemilumineszenz. Zeit. wiss. Photog., vol. iii, pp. 121-130.
Trojan, E.: 1906, Neuere Arbeiten ueber die Leuchtorgane der Fische. Zool. Ctbl., Bd. xiii, pp. 273-284.
Trojan, E.: 1907, Zur Lichtentwicklung in den PhotosphÄrien der Euphausien. Arch. f. mikr. Anat., Bd. lxx, pp. 177-188.
Trojan, E.: 1909, Leuchtende Ophiopsilen. Arch. f. mikr. Anat., Bd. lxxiii, pp. 883-912.
Trojan, E.: 1910, Ein Betrag zur Histologie von PhyllirhoË bucephala. Peron und Lesueur. mit besonderer BerÜcksichtigung des LeuchtvermÖgens des Tieres. Arch. microscop. Anat., vol. lxxv, pp. 473-517.
Trojan, E.: 1913, Ueber HautdrÜsen des ChÆtopterus variopedatus, Clap. Sitz. ber. d. Kais. Ac. d. wiss. Wein., vol. cxxii, Abt. 1.
Trojan, E.: 1915, Die Leuchtorgane von Cyclothone Signata, Garman. Sitz.-ber. d. K. Akad. der wiss. Wien., Bd. cxxiv, Abt. 1.
Tschugaeff, L.: 1901, Ueber Tribolumineszenz. Ber. d. d. chem. Ges., vol. xxxiv, pp. 1820-1826.
Vallentin, R., and Cunningham, J. T.: 1888, The Photospheria of Nyctiphanes Norvegica. Quart. Journ. of Micr. Sc., N. S., vol. xxviii, pp. 319-341.
Van't Hoff, J. H.: 1895, Ueber die menge und die Nature des sogen. Ozons das sich bei langsamer Oxidations des Phosphors bildet. Zeit. physik. Chem., vol. xvi, pp. 411-416.
Verrill, A. E.: 1884, Evidences of the Existence of Light at Great Depths in the Sea. Nature, vol. xxx, pp. 280-281.
Verworn, M.: 1892, Ein automatisches Zentrum fÜr die Lichtproduktion bei Luciola italica L. Ctbl. f. Physiol., Bd. vi, pp. 69-74.
Vignal, W.: 1878, Recherches histologiques et physiologiques sur les Notiluques. Arch d. Physiol. Norm. et Patholog., 2nd ser., T. v, pp. 415-454.
Ville, J., and Derrien, E.: 1913, Catalyse biochemique d'une oxydation luminescente. C. R. Ac. Sc., vol. clvi, p. 2021.
Vogel., R.: 1915, Beitrag zur Kenntnis des Baues und der Lebensweise der Larve von Lampyris noctiluca. Zeit. wiss. Zool., vol. cxii, pp. 291-432.
Watanabe, H.: 1897, The Phosphorescence of Cypridina hilgendorfii. Annot. Zool. Japan, vol. i; also, Zool. Jahrs., 1897.
WatasÉ, S.: 1895, On the Physical Basis of Animal Phosphorescence. Biol. Lect. Marine Biol. Lab. Woods Hole, pp. 101-119.
WatasÉ, S.: 1898, Protoplasmic Contractility and Phosphorescence. Biolog. Lect. Marine Biol. Lab. Woods Hole, pp. 177-192.
Weiser, H. B.: 1918a, Color Determination of Faint Luminescence. Journ. Phys. Chem., vol. xxii, pp. 439-449.
Weiser, H. B.: 1918b, Crystalloluminescence, I, II. Journ. Phys. Chem., vol. xxii, pp. 480-509, and pp. 576-595.
Weitlaner, F.: 1909, Etwas von Johannis-KÄferlicht. Verh. d. Zool. Bot. Ges. Wein., vol. lix.
Weitlaner, F.: 1911, Weiteres vom JohanniskÄferlicht und von Organismenleuchten uberhaupt, etc. Verh. d. Zool. Bot. Ges. Wein., vol. xli, p. 192.
Weleminsky, F.: 1895, Die Ursachen des Leuchtens bei Choleravibrionen. Prager med. Wochenschr., Bd. xx, pp. 263-264.
Welker, W. H.: 1912, Diffusibility of Protein Through Rubber Membranes with a Note on the Disintegration of Colloidian Membranes by Common Ethyl Ether and Other Solvents. Biochem. Bull., vol. ii, p. 70.
Wheeler, W. M., and Williams, F. X.: 1915, The Luminous Organ of the New Zealand Glowworm. Psyche, vol. xxii, pp. 36-43.
Weidemann, E.: 1888, Ueber Fluorescenz und Phosphorescenz. Wied. Ann. d. Phy. u. Chem., vol. xxxiv, pp. 446-469.
Wiedemann, E., and Schmidt, G. W.: 1895a, Ueber Luminescenz. Wied. Ann. d. Phy. u. Chem., vol. liv, pp. 604-625; 1895b, vol. lvi, pp. 201-254.
Wielowiejski, H. R. v.: 1882, Studien ueber die Lampyriden. Ztschr. f. wiss. Zool., Bd. xxxvii, pp. 354-428.
Williams, F. X.: 1916, Photogenic Organs and Embryology of Lampyrids. Journ. Morph., vol. xxviii, pp. 145-186.
Yatsu, N.: 1917, Note on the Structure of the Maxillary Gland of Cypridina hilgendorfii. Journ. Morph., vol. xxix, pp. 435-440.
Young, C. A.: 1870, The Spectrum of the Firefly. Amer. Nat., vol. iii, p. 615.
Zacharias, O.: 1905, Beobachtungen ueber das LeuchtvermÖgen von Ceratium tripos. Biol. Ctbl., Bd. xxv, pp. 20-30.
INDEX
- Abegg, R., 147
- Acanthephyra, 78
- Agaricus, 99
- Agassiz, A., 11
- Alkaptonuria, 17
- Allman, G. I., 11, 71
- Ammonia, 12
- Anodoluminescence, 26, 29
- Anornalops, 69
- Aristeus, 72
- Aristotle, 1
- Bach, A., 137
- Bacteria, luminous, 2, 10, 13, 14, 16, 18, 28, 45, 53, 61, 65, 69, 72, 74, 81, 82, 89, 99, 101, 103
- Bacterial lamps, 18
- Baker, J., 2
- Bancroft, W. D., 36
- Bancroft and Weiser, 24
- Bandrowski, E., 33
- Barcroft and Hill, 98
- Barnea, 116
- Batelli and Stern, 115
- Becquerel, E., 26
- Beijerinck, M. W., 18, 89, 99, 100, 102
- Bigelow, S. L., 34
- Black, 91
- Bolitophila, 77
- Boyle, R., 1, 16, 85 ff
- Brandt, 36
- Brittle stars or ophiuroids, 10, 11, 72
- Canton's phosphorus, 27
- Carbon dioxide and luminescence, 91 ff
- Cardium, 116
- Cascariolo, V., 27
- Cathodoluminescence, 26, 29
- Cavernularia, 74, 103
- Centnerzwer, M., 147
- Cephalopods or Squid, 10, 11, 13, 68, 72, 84, 104
- Ceratium, 71
- ChÆtopterus, 10, 17, 42, 71, 73, 74, 83, 103
- Chemiluminescence, 36 ff, 45 ff
- Chlorophyll formation by animal light, 66
- Chromophyton, 15
- Chun, C., 79
- Coblentz, W. W., 30, 31, 44, 51, 52, 59, 60, 62, 64, 93, 160.
- Co-enzyme, 104, 130
- Co-luciferase, 107 ff
- Color of animal light, 41 ff, 157 ff
- Concentration and luminiscence, 145 ff
- Conroy, J., 43
- Crozier, W. J., 71, 103
- Crustacea, 10, 14, 68, 70, 72, 89, 101 ff
- Crysalloluminescence, 33 ff, 74
- Ctenophores, 2, 10, 11, 71, 72, 82
- Cyanides and luminescence, 126
- Cypridina, 14, 30, 45, 48, 63, 71, 73, 75 ff, 90, 92, 98, 103, 105 ff, 155 ff
- Dahlgren, U., 72, 73, 75
- "Death Glow," 69
- Dinoflagellates, 2, 10, 32, 82
- Dubois, R., 31, 35, 37, 43, 45, 49, 61, 64, 73, 103 ff, 111, 114 ff, 131, 155
- Earthworms, 10
- Efficiency of animal light, 48 ff
- Eggs, luminous, 11
- Electroluminescence, 24, 29
- Embryos, luminous, 11
- Euphasia, 72
- Ewan, T., 147
- Exner, S., 30
- Extracellular luminescence, 68, 71
- Eyes, luminous, 15 ff
- Fabre J. H., 99
- Fahrig, E., 37
- Fireflies, 10, 31, 34, 43, 69, 71, 77 ff, 89, 93, 101, 103, 135, 160
- Fishes, 1, 3, 10, 18, 64, 69, 72, 84, 85
- Flowers, flashing of, 16
- Fluorescence, 25 ff, 62
- Fluorescent screens, 29
- Forsyth, R. W., 53
- Frankland, P., 62
- Friedberger & Doepner, 65
- Frogs, luminous, 13
- Fungi or Basidiomycetes, 10, 69, 72, 81, 89, 99, 101
- Galloway and Welch, 84
- Gernez, D., 32
- Giard and Billet, 13
- Giesbrecht, W., 11, 70
- Glowworms, 1, 10, 43, 77
- Gnathophausia, 72
- Goss, B. C., 143
- Greene, C. W., 70
- Guinchant, 37
- H-ion concentration and luminescence, 92, 138, 155
- Heat production and luminescence, 93 ff
- Heliotropism by animal light, 66.
- Heller, J. F., 1, 2, 16
- Heterocarpus, 72
- Heteroteuthis, 72
- Hooke, R., 91
- Hulme, N., 1
- Hyde, Forsyth and Cady, 57, 63
- Hydrogenase, 131
- Hydroils, 10, 72
- "Ignis fatuus," 15
- Immune bodies, 104
- Infection, with luminous bacteria, 13
- Infra red rays in animal light, 48 ff
- Intensity of animal light, 63
- Intracellular Luminescence, 68, 71
- Interference colors, 14
- Issatschenko, B., 66
- Ives, H. E., 28, 44, 51 ff, 59, 61
- Langley and Very, 43, 50 ff, 64
- Lankester, E. R., 42
- Lavoisier, 91
- Lenard and Wolf, 37
- Ligia, 13
- Limulus, 129
- Linnemann, E., 36
- Lode, A., 65
- Luciferase, 103 ff. Chap VI (properties);
- of Pholas, 114;
- of Cypridina, 123 ff
- Luciferesceine, 31, 110
- Luciferin, 103 ff. Chap. VI (properties);
- of Pholas, 114;
- of Cypridina, 116 ff
- Luciola, 103, 125.
- Luminescence, 23 ff
- Luminosity, distribution in plant and animal kingdom, 3 to 12
- Luminosity, false, 12 ff
- Luminous animals, habitat, 10
- Luminous animals, uses of to man, 17 ff
- Luminous granules, 73, 75
- Lyman rays, 21
- Lyoluminescence, 35
- MacCartney, J., 2, 3
- Macfayden, A., 157
- Macrozymases, 73
- Man, luminosity of, 16
- Mangold, E., 11, 72
- Massart, J., 71
- Mast, S. O., 69
- Mayow, 91
- McDermott, F. A., 31, 37, 45, 53
- McKenney, R. B., 100
- MedusÆ or jelly fish, 2, 10, 72, 82
- Methane, 15.
- Michaelis, G. A., 1
- "Minimum radiation visually perceptible," 65, 144
- Molisch, H., 45, 53, 61, 66, 102
- Molluscs, 10, 72
- Monocentris, 69, 104
- Moore, B., 71
- Muraoka, H., 61
- Myriapods, 10, 2
- Sepietta, 72
- Sergestes, 72, 78
- Singh and Maulik, 61
- Solen, 116
- Spallanzani, L., 85, 101
- Spectrum of chemiluminescence, 39
- Spectrum of luminous organisms, 42 ff
- Spectrum of phosphorescence, 28
- Spectrum, range of, 21 ff
- Spinthariscope, 30
- Steche, O., 65, 69
- Stefan-Boltzmann Law, 22, 23
- Stimulation and luminescence, 68 ff, 135
- Stoke's Law, 28, 31
- Stylochiron, 72
- Suchsland, E., 61
- Sulphides, phosphorescence of, 27
- Sweat, luminous, 17
- Talitrus, 13
- Tarchanoff, J., 13
- Temperature and luminescence, 145 ff, 156 ff
- Temperature radiation, 23
- Thaumatolampas, 42
- Thermoluminescence, 24 ff
- Tomopterus, 72
- Transparency of chitin to infra-red, 52
- Trautz, M., 32, 33, 37, 39, 145
- Triboluminescence, 32 ff
- Trojan, E., 11, 78
- Tschugaeff, L., 32
- Ultra violet rays in animal light, 53 ff
- Urine, luminous, 18
- Uses of luminous organs, 81 ff
- Vacuolides, 73
- van Helmont, 91
- van't Hoff, J. H., 147
- Vibrio, 65
- Ville and Derrien, 111
- Visual sensibility, 54 ff
- Watanabe, H., 75
- Watasenia, 104
- Water and luminescence, 85, 101
- Weiser, H. B., 33, 34, 39
- Welker, W. H., 121
- Wheeler and Williams, 77
- Wiedemann, E., 23
- Wiedemann and Schmidt, 25, 36
- "Will-o'-the-wisp," 15
- Wood, phosphorescent or shining, 1,
The spellings of "Sidot blend" and "Sidot blende" are used interchangeably.
"PH" or PH (subscript H) is used throughout for the scale of alkali-acidity where the modern usage is "pH".
On page 173, the citation for Nutting, P. G.: 1908 has page range pp. 261-039. This is as it appears in the original, but is probably in error.
Minor corrections to formatting and missing punctuation (mostly in the bibliography) have been changed without an explicit note.
Changes to the text have been made only in the case of obvious spelling or type-setting errors. These are listed as follows:
Page ix: changed "Phoshorescence" to "Phosphorescence" (II. Luminescence and Incandescence ... Phosphorescence and fluorescence.)
Page ix: changed "Biozymoxyluminescence" to "BiozymoÖxyluminescence" (V. The Chemistry of Light Production, Part I ... "BiozymoÖxyluminescence.")
Page x: changed "chemi-luminescence" to "chemiluminescence" in two instances (Reaction velocity and chemiluminescence. Temperature and chemiluminescence.)
Page 15: changed "th" to "the" (Less well known is the Ignis fatuus)
Page 26: re-positioned period outside of parentheses "after being illuminated (photoluminescence)."
Page 29: changed "platino-cyanide" to "platinocyanide" (Fluorescent screens of barium platinocyanide)
Page 29: added missing comma (willemite (Zn2SiO4), Sidot blend)
Page 34: added missing closing quotation mark ("It is altogether probable that the cause of this" ...)
Page 39: superscript "2" changed to subscript "2" in Na2CO3 (the pyrogallol-formaldehyde-Na2CO3-H2O2 reaction).
Page 41: "50-metre candles" changed to "50 metre-candles" (Below 0.5 and above 50 metre-candles visibility varies ...)
Page 42, Table 4: changed "FraÜnhofer" to "Fraunhofer" in the caption and table heading (Fraunhofer Lines)
Page 47, Table 5: changed "Forster" to "FÖrster" (Bacteria ... FÖrster, 1887)
Page 56, Fig 12 caption: "Forsythe" changed to "Forsyth" (after Hyde, Forsyth and Cady).
Page 72: added missing closing parenthesis "the molluscs (Pholas and PhyllirhoË)".
Page 74: "secretion" changed to "section" (A section of the epithelium shows large mucous-producing cells ...)
Page 75: added missing closing punctuation (At least one, probably two, are concerned in light production.)
Page 75: changed "intra-cellular" to "intracellular" (animals possessing light cells with intracellular luminescence)
Page 81; Fig. 29 caption: added missing comma (chr.1, chromatophore; ...)
Page 87: added missing closing parenthesis "(and that too of such a Density to make them continue shining)."
Page 90: "necesary" changed to "necessary" (Boyle also made many experiments to show that air was necessary for the life of animals ...)
Page 93: changed "thermo-couple" to "thermocouple" (using a thermocouple as the measuring instrument)
Page 94: "D" changed to "B" (placed in a large Dewar flask (B) filled with water)
Page 94: "Thermo-couples" changed to "Thermocouples" (Thermocouples (L and M) of advance...)
Page 97: "thermo-couple" changed to "thermocouple" (Readings of each thermocouple on the galvanometer scale ...)
Page 100: changed "McKenny" to "McKenney" (McKenney (1902) found also ...)
Page 102: changed "misceable" to "miscible" (insoluble in water but miscible with it)
Page 103: "demontrate" changed to "demonstrate" (I have been unable to demonstrate their existence in luminous bacteria;)
Page 104: "thermolable" changed to "thermolabile" ( ...and a thermolabile complement (alexin) are necessary.)
Page 104: "thermolable" changed to "thermolabile" (Because of the necessity of thermostable and thermolabile substances for light production ...)
Page 105: "thermolable" changed to "thermolabile" (luciferase (=photogenin) for the thermolabile material ...)
Page 111: "preslence and H2O3" changed to "presence of H2O2" (lophin could be oxidized by vertebrate blood in the presence of H2O2.)
Page 116: "or" changed to "of" ( ... and would disappear from solution in the course of a day or so.)
Page 116: changed "oxidizible" to "oxidizable" (The luciferins, as the oxidizable substances, must claim first attention.)
Page 123: "contrated" changed to "concentrated" (1 c.c. portions of concentrated luciferin)
Page 132: "coluciferase" changed to "co-luciferase" (He now regards it as identical with his co-luciferase)
Page 151, Table 13: corrected duplicate numbering "10" to "11" (11 Ferric chloride)
Page 151, Table 13: corrected duplicate numbering "14" to "15" (15 Chromic sulfate)
Page 151, Table 13: abbreviated "minute" to "min." in two entries (boiled 1 min. and filtered)
Page 158: changed "appear" to "appears" (... and yet light appears only in presence of the latter.)
Page 162: added missing closing punctuation (More complete works on light and luminescence come first and original articles follow.)
Page 165: added missing comma (Dubois, R.: 1918a, Sur la SynthÈse de la Luciferine.)
Page 165: changed "BiophotogÉnesis" to "BiophotogÉnÈse" (Recherches Recentes de M. Newton Harvey sur la BiophotogÉnÈse)
Page 165: changed "BiophotogÉnÈsis" to "BiophotogÉnÈse" (Nouvelles Recherches sur la BiophotogÉnÈse)
Page 166: changed "Oxydations geschwindigkeit" to "Oxydationsgeschwindigkeit" (Ueber die Oxydationsgeschwindigkeit von Phosphor ...)
Page 166: changed "Radiumstrahlem" to "Radiumstrahlen" (Einige Beobachtungen ueber die durch Radiumstrahlen in den tierischen Geweben erzeugte Phosphoreszenz.)
Page 166: changed "neiderer" to "niederer" (Ueber die Entwicklung von Bakterien bei niederer Temperatur.)
Page 167: changed "nueue" to "neue" (Ueber die rosettenfÖrmigen Leuchtorgane der Tomopteriden und zwei neue Arten von Tomopteris.)
Page 169: added missing hyphen to "Pflanzen-" (Ueber das Leuchten im Pflanzen-und Tierreiche.)
Page 169: changed "Rucksicht" to "RÜcksicht" (mit bes. RÜcksicht auf. med. Diagnost. u. Therapie Wien.)
Page 170: changed "jord." to "jard." (Bull. d. jard. imp. botan. St. Petersburg)
Page 171: changed "LichtfaÜle" to "LichtfÄule" (Phosphorezierende TausendfÜssler und die LichtfÄule des Holzes)
Page 172: changed "Pfluger's Arch" to "PflÜger's Arch." (PflÜger's Arch., Bd. cxix, pp. 583-601.)
Page 174: changed "Bedentung" to "Bedeutung" ( ... ihre Bedeutung fÜr die Principien der Respiration)
Page 175: changed "Lazaro" to "Lazzaro" (Spallanzani, Lazzaro: 1794, ...)
Page 176: changed "Leuchtvermogen" to "LeuchtvermÖgen" (Ueber das LeuchtvermÖgen von Amphiura squamata, Sars.)
Page 177: changed "Triboluminescenz" to "Tribolumineszenz" (Tschugaeff, L.: 1901, Ueber Tribolumineszenz.)
Page 179: changed "Bandromski" to "Bandrowski" (Bandrowski, E., 33)
Page 179: changed "Baelli" to "Batelli" (Batelli and Stern, 115)
Page 179: changed "Centnerswer" to "Centnerzwer" (Centnerzwer, M., 147)
Page 179: changed "Fire-flies" to "Fireflies" (Fireflies, 10, 31, 34,...)
Page 180: changed "Forsythe" to "Forsyth" (Hyde, Forsyth and Cady, 57, 63).
Page 180: changed "Flankland" to "Frankland" (Frankland, P., 62)
Page 180: changed "Glow-worms" to "Glowworms" (Glowworms, 1, 10, 43, 77)
Page 181: changed "Piezolumisescence" to "Piezoluminescence" (Piezoluminescence, 32 ff).
Page 182: changed "Stefan-Boltzman" to "Stefan-Boltzmann" (Stefan-Boltzmann Law, 22, 23)
Page 182: changed "infrared" to "infra-red" (Transparency of chitin to infra-red, 52)
Page 182: added missing page references (Weiser, H. B., 33, 34, 39).
Return to top of the book.