MOLLUSCS. The Molluscs in general.—The Cephalopods.—Dibranchiates and Tetrabranchiates.—Arms and Tentacles.—Suckers.—Hooked Acetabula of the Onychoteuthis.—Mandibles.—Ink Bag.—Numbers of the Cephalopods.—Their Habits.—Their Enemies.—Their Use to Man.—Their Eggs.—Enormous size of several species.—The fabulous Kraken.—The Argonaut.—The Nautili.—The Cephalopods of the Primitive Ocean.—The Gasteropods.—Their Subdivisions.—Gills of the Nudibranchiates.—The Pleurobranchus plumula.—The Sea-Hare.—The Chitons.—The PatellÆ.—The Haliotis or Sea-Ear.—The CarinariÆ.—The Pectinibranchiates.—Variety and Beauty of their Shells.—Their Mode of Locomotion.—Foot of the Tornatella and Cyclostoma.—The IanthinÆ.—Sedentary Gasteropods.—The Magilus.—Proboscis of the Whelk.—Tongue of the Limpet.—Stomach of the Bulla, the ScyllÆa, and the Sea-Hare.—Organs of Sense in the Gasteropods.—Their Caution.—Their Enemies.—Their Defences.—Their Use to Man.—Shell-Cameos.—The Pteropods.—Their Organisation and Mode of Life.—The Butterflies of the Ocean.—The Lamellibranchiate Acephala.—Their Organisation.—Siphons.—The Pholades.—Foot of the Lamellibranchiates.—The Razor-Shells.—The Byssus of the PinnÆ.—Defences of the Bivalves.—Their Enemies.—The common Mussel.—Mussel Gardens.—The Oyster.—Oyster Parks.—Oyster Rearing in the Lago di Fusaro.—Formation of new Oyster Banks.—Pearl-fishing in Ceylon.—How are Pearls formed?—The Tridacna gigas.—The Teredo navalis.—The Brachiopods.—The TerebratulÆ.—The Polyzoa.—The Sea-Mats.—The EscharÆ.—The LepraliÆ.—Bird's Head Processes.—The Tunicata.—The Sea-Squirts.—The Chelyosoma.—The Botrylli.—The Pyrosomes.—The SalpÆ.—Interesting Points in the Organisation of the Tunicata. Simple or compound, free or sessile, peopling the high seas or lining the shores, the marine Molluscs, branching out into more than ten thousand species, extend their reign as far as the waves of ocean roll. Though distinguished from all other sea-animals by the common character of a soft unarticulated body, possessing a complicated digestive apparatus, and covered by a flexible skin or mantle, under or over which a calcareous shell is generally formed by secretion, yet their habits are as various as their forms. Some dart rapidly through the waters, others creep slowly along, or are firmly bound to the rock; in some The Cephalopods are the most perfect specimens of the molluscan type, as the decapods are the first among the crustaceans. These remarkable creatures consist of two distinct parts: the trunk or body, which, in form of a sack, open to the front, encloses the branchiÆ and digestive organs, and the well-developed head, provided with a pair of sharp-sighted eyes, and crowned with a number of fleshy processes, arms or feet, which encircle and more or less conceal the mouth. It is to this formation that the cephalopod owes its scientific name, for as the feet grow from the circumference of the mouth, it literally creeps upon its head. Poulp (Octopus). All the cephalopods are marine animals, and breathe through branchiÆ or gills. These are concealed under the mantle, in a cave or hollow, which alternately expands and contracts, and communicates by two openings with the outer world. The one in form of a slit serves to receive the water; the other, which is tubular, is used for its expulsion. According to the different number of their gills, the cephalopods are divided into two groups. The first, to which the poulp and common cuttle-fish belong, and which comprises by far the majority of living species, has only two sets of gills; while the second, which, in the present epoch, is only represented by a few species of Nautilus, has four, two on each side, according to the number of their arms or feet—for these remarkable organs serve equally well for prehension or locomotion. The first group is again subdivided into two Both the arms and tentacles are furnished with suckers disposed along the whole extent of the inner surface of the former, but generally confined to the widened extremities of the latter, where they are closely aggregated on the inner aspect. Calamary. In all the octopods the suckers are soft and unarmed. Every sucker is composed of a circular adhesive disk, which has a thick fleshy circumference and bundles of muscular fibres radiating towards the circular orifice of an inner cavity. Section of an arm and suckers of a Poulp. e. Soft and tumid margin of the disk. g. Circular aperture. This widens as it descends, and contains a cone of soft substance, rising from the bottom of the cavity, like the piston of a syringe. When the sucker is applied to a surface for the purpose of adhesion, the piston, having previously been raised so as to fill the cavity, is retracted, and a vacuum produced, which may be still further increased by the retraction of the plicated central portion of the disk. So admirably are these air-pumps constructed, and so tenacious is their grasp, that, when they have once seized or fixed upon a prey, it cannot possibly disengage itself from their murderous embrace. In many of the decapods, who, generally seeking their prey in Arms and Tentacles of an Onychoteuthis. e. Parts joined together by the mutual apposition of the armed suckers. f. Terminal expanded portions bearing the hooks. Click on image to view larger version. Besides the hooked acetabula, a cluster of small simple unarmed suckers may be observed at the base of the expanded part. These add greatly to the animal's prehensile powers, for when they are applied to one another (e), the tentacles are firmly locked together at that point, and the united strength of both the elongated peduncles can be applied to drag towards the mouth any resisting object which has been grappled by the terminal hooks. There is no mechanical contrivance which surpasses the admirable structure of this natural forceps. The size of the arms and the arrangement of the suckers differ considerably in the various species. In the octopods or poulps, which generally lead a more sedentary creeping life, and, hidden in the crevices of rocks, await the passing prey, the arms, in accordance with their wants, are with rare exceptions longer, more muscular, and stronger, than in the actively swimming decapods, where the two elongated tentacles or peduncles are the chief organs of prehension. In some species we find the arms distinct—in others they are united by a membrane. Some have a double row of suckers on each arm, others four rows, others again but one. So wonderful are the variations which nature, that consummate artist, plays upon a single theme—so inexhaustible are the modifications she introduces into the Thus well provided with the means for seizing and overcoming the struggles of a living prey, the Cephalopods likewise possess adequate weapons for completing its destruction; for their mouth is most formidably armed with two horny or calcareous jaws, shaped like the mandibles of a parrot, playing vertically on each other, and enclosing a large fleshy tongue bristling with recurved horny spines. Hard, indeed, must be the crab which can resist this terrible beak; and when the cuttle-fish has once fixed on the back of a fish, though much larger and stronger than himself, it is in vain for the tortured victim to fly through the water: he carries his enemy with him till he sinks exhausted under his murderous fangs. Besides their arms, by help of which the Cephalopods either swim or creep, the forcible expulsion of the water through the respiratory tube or infundibulum serves them as a means of locomotion in a backward direction. By those which have an elongated body and comparatively strong muscles, this movement is performed with such violence that they shoot like arrows through the water, or even like the flying-fish perform a long curve through the air. Thus Sir James Ross tells us, that once a number of cuttle-fish not only fell upon the deck of his ship, which rose fifteen or sixteen feet above the water, and where more Sepia. b. Finny membrane running along the sides of the body. c. Arms with four rows of suckers. d. Elongated retractile tentacles. e. Eyes. It might be supposed that the dibranchiate cephalopods, by their swiftness, their arms, and their powerful jaws, were sufficiently provided with means of attack or defence; but it must The cephalopods are scattered in vast numbers over the whole ocean, from the ice-bound shores of Boothia Felix to the open main; they seem, however, to be most abundant in temperate latitudes. Some, like the common poulp, constantly frequent the coasts, creeping among the rocks and stones at the bottom; others, like the Cirroteuthis and Ommastrephes, roam about the high seas at a vast distance from the land. They are generally nocturnal or vespertine in their habits; they abound towards evening and at night on the surface of the seas, but sink to a greater depth, or retire into the crevices of the rocks, as soon as the sun rises above the horizon. Some are of a recluse disposition, and lead a solitary life in the anfractuosities of the littoral zone; others, of a more social temper, wander in large troops along the shores, or over the vast plains of ocean. Possessing the organs of sense, and the means of locomotion in a high degree of development, the cephalopods may naturally be expected to be far more active and intelligent than the inferior orders of the molluscs. On moonlight nights, among At the Cape de Verd islands, Mr. C. Darwin was also much amused by the various arts to escape detection used by a cuttle-fish, which seemed fully aware that he was watching it. Remaining for a time motionless, it would then stealthily advance an inch or two, like a cat after a mouse, and thus proceeded, till, having gained a deeper part, it darted away, leaving a dusky train of ink, to hide the hole into which it had crawled. All the cephalopods are extremely voracious; they destroy on shallow banks the hopes of the fishermen, devour along the coasts and on the high seas countless myriads of young fish and naked molluscs, and kill, like the tiger, for the mere love of carnage. Thus they would become dangerous to the equilibrium of the seas if nature, to counterbalance their destructive habits, had not provided a great number of enemies for the thinning of their ranks. They form the almost exclusive food of the sperm-whales, and the albatross and the petrels love to skim them from the surface of the ocean. Tunnies and bonitos devour them in vast numbers, the cod consumes whole shoals of squids, and man, as I have already mentioned, catches many millions to serve him as a bait for this valuable fish. At Teneriffe, in the Brazils, in Peru and Chili, in India and China, various species of cephalopods are used as food. Along the eastern shores of the Mediterranean, the common sepia Animals exposed to the attacks of so many enemies must necessarily multiply in an analogous ratio. Their numerous eggs are generally brought forth in the spring. In the species inhabiting the high seas, they float freely on the surface, carried along by the currents and winds, and form large gelatinous bunches or cylindrical rolls, sometimes as large as a man's leg. The eggs of the littoral cephalopods appear in the form of dark-coloured, roundish or spindle-shaped bodies, of the size and colour of grapes, and hanging together in clusters. They are soft to the touch, with a tough skin, resembling india-rubber; one end is attenuated into a sort of point or nipple, and the other prolonged into a pedicle, which coils round sea-weed or other floating objects, and serves to fix the berry-like bag in its place. At an early stage these "sea-grapes," as they are called by the fishermen, contain a white yolk enclosed in a clear albumen, and nearer maturity the young cuttle-fish may be found within in various stages of formation, until finally, hatched by the heat of the sun, it emerges from the husk perfectly formed, and launches forth into the water. Ova of the Cuttle-fish. Some species of cephalopods are only about the size of a finger, while others attain an astonishing size. Banks and Solander, in Near Van Diemen's Land, PÉron saw a sepia about as big as a tun rolling about in the waters. Its enormous arms had the appearance of frightful snakes. Each of these organs was at least seven feet long, and measured seven or eight inches round the base. These well authenticated proportions are truly formidable, and fully justify the dread and abhorrence which the Polynesian divers entertain of those snake-armed monsters of the deep; but not satisfied with reality, some writers have magnified the size of the cephalopods to fabulous dimensions. Thus Pernetti mentions a colossal cuttle-fish, which, climbing up the rigging, overturned a three-masted ship; and Pliny notices a similar giant, with arms thirty feet long and a corresponding girth. But all this is nothing to the Norwegian kraken, a mass of a quarter of a mile in diameter, and a back covered with a thicket of sea-weeds. When it comes to the surface, which seems to be but rarely the case, it raises its arms mast-high into the air, and, having enjoyed for a time the lovely daylight, sinks slowly back again into abysmal darkness. Fishermen are said to have landed on a kraken, and to have kindled a fire upon the supposed island for the purpose of cooking their dinner. But even a kraken, thick-skinned as he may be, does not like his back to be converted into a hearth, and thus it happened that the treacherous ground gave way under the mistaken mariners, and overwhelmed them in the waters. Strange that the oriental tale of Sinbad the sailor should thus be re-echoed in the wild legends of the north. All the dibranchiate cephalopods are destitute of an outward shell, with the sole exception of the Spirula, a small species chiefly found in the South Sea, and of the far more renowned Argonaut, which poets, ancient and modern, have celebrated as the model from which man took the first idea of navigation. Argonaut. As he sits loosely in his shell, he was supposed by some naturalists to be a parasite enjoying the house of the unknown murdered owner; but this is perfectly erroneous, as the young in the egg already show the rudiments of the future shell, and the full-grown animal repairs by reproduction any injury that may have happened to it. Pearly Nautilus. The tetrabranchiate cephalopods, or Nautili, are very differently constructed from their dibranchiate relations. Here, instead of mighty muscular arms, furnished with suckers or raptorial claws, we find a number of small, sheathed, and retractile tentacles (f), surrounding the mouth in successive series, and amounting to little short of a hundred. The head is further provided with a large muscular disk (g), which, besides acting as a defence to the opening of the shell, serves also in all probability as an organ for creeping along the ground, like the foot in the Gasteropods. The mandibles are strengthened by a dense calcareous substance fit to break up the defensive armour of the crustacean or shell-fish on which the animal feeds. There is no ink-bag, no organ of hearing, and the eyes (h) are pedunculated, and of a What renders these animals peculiarly interesting is the circumstance that they are the only living representatives of a class which once filled in countless numbers the bosom of the primeval ocean, and whose fossil remains (Orthoceratites, Ammonites) furnish the naturalist with a series of historical documents, attesting the unmeasured age of our planet. What are the ruins, thirty or forty centuries old, that speak of the vanished glories of extinguished empires to these wonderful medals of creation that lead our thoughts through the dim vista of unnumbered centuries to the fathomless abyss of the past. In point of development of organisation the Gasteropods or snails rank immediately after the Cephalopods. They also have a head plainly distinguishable from the rest of the body, and to which two brilliant black eyes give an animated expression. But their nervous system is far less developed, and while the lively cephalopod is able to swim about, and rapidly to seize a distant prey, almost all the gasteropods creep slowly along upon a flat disk or foot situated below the digestive organs, a formation to which they owe their name of gasteropods or stomach-footers. The marine snails are divided into several groups according to the different position and arrangement of their gills. In some species these organs form naked or free-swimming tufts on the back (Nudibranchiata) but generally they are variously disposed either in special cavities or under the folds of the mantle. Thus in the Inferobranchiata they are arranged
ScyllÆa. Nothing can be more elegant or various than the form and arrangement of the gills in most of the nudibranchiate gasteropods. In the Glauci and ScyllÆÆ, we see at each side of the elongated body long arms branching out into tufty filaments; in the Briarei a hundred furcated stems serve for the aËration of the blood. On the back of the Eolides the gills are arranged in rows; in the Dorides they form a wreath or garland round the posterior intestinal aperture. The beauty of these animals corresponds with their charming mythological names, for every part of them which is not Eolis. Though they have no shell to cover them, the Nudibranchiata are not left defenceless to the mercy of their enemies. The transparency of their body is a cause of safety to many of them. Some conceal themselves under stones or among the branches of the madrepores, and some on contracting cast off a part of their mantle, which they leave in possession of their hungry foe, while they themselves make their escape. Among the British Inferobranchiata we find the rare golden or orange-coloured Pleurobranchus plumula, thus named from its branchiÆ projecting like a plume from between the mantle and foot in crawling; and among the Tectibranchiata the common sea-hare (Aplysia punctata), which resembles a great naked snail; its back opening with two wide lobes, which can be expanded or closed over the opening at the animal's will. When open, they expose to view on the right side the finely fringed and lobed branchiÆ, seated in a deep hollow beneath a fold of the mantle. The uncomely creature glides along over the stones upon its flat fleshy foot and up the slender stems of sea-weeds by bringing the borders of the same locomotive apparatus to More than forty species of AplysiÆ are known, most of them inhabitants of the warmer seas. The acrid humour exuded by the depilatory aplysia, or Aplysia depilans, of the Mediterranean is still supposed by the Italian fishermen to occasion the loss of the hair, and was used by the ancient Romans in the composition of their venomous potions—though it is by no means poisonous. Such are the prejudices resulting from the propensity of man to associate evil qualities with an unprepossessing appearance. Chiton squamosus. To the Cyclobranchiate order belong the Limpets and the Chitons. The latter, which are the only multivalve shells among the Gasteropods, are spread in more than two hundred species over every shore from Iceland to the Indies, but they are particularly abundant on the coasts of Peru and Chili. Some of the smaller species inhabit our coasts, where they may be found adhering to stones near low water mark. They are coated with eight transverse shelly plates, folding over each other at their edges like the plates of ancient armour, and inserted into a tough marginal band, so as to form a complete shield to the animal. Thus encased in coat of mail, the chitons have the power of baffling the voracity of their enemies by rolling themselves up into a ball like the wood-louse or the armadillo: they are also able to cling with such tenacity to the rock that it is difficult to detach them without tearing them to pieces. The Limpets, or PatellÆ, likewise attach their shield-like shell so firmly to a hard body that it requires the introduction of a knife between the shell and the stone to detach them. It has been calculated that the Limpet and Shell. The beautiful Sea-ear, or Haliotis, is the chief representative of the scutibranchiate gasteropods. The flattened shell, perforated with small holes on one side, is characterised by a very wide mouth or aperture, the largest in any shell except the limpet. The outside is generally rough, or covered with marine substances; the inside presents the same enamelled appearance as mother-of-pearl, and exhibits the most beautiful colours. The holes with which the shell is perforated serve to admit water to the branchiÆ, and are formed at regular intervals as it increases in size. The foot is very large, having the margin fringed all round, and is able, like that of the chiton or the limpet, to cling firmly to the rock. More than seventy species of Haliotis are known, the greater part occurring in the Pacific Ocean. Haliotis. c. Series of perforations. d. Eye peduncles. e. Tentacles. g. Foot. Carinaria. To the scutibranchiate gasteropods also belong the strangely formed CarinariÆ, which seem to be made up of disjointed parts. The gills (g) project from under a thin vitreous shell (f), which projects from the dorsal surface, and has a form not unlike that of the Argonaut or of a Phrygian cap. The foot (b) is not formed for creeping, but constitutes a muscular vertical paddle or fin, that serves them for swimming on the back, and is furnished with a sucking disk (c), with which they are enabled to attach themselves to floating objects. The Pectinibranchiata comprise all the spiral univalve shells, and are by far the most numerous of all the gasteropods, as their species are not counted by hundreds, but by thousands. If their calcareous garment could be drawn out, it would be found to consist of a tube gradually widening from the apex to the base; but what an immense variety of form and ornaments, what a prodigality of splendid tints, has not Nature spread over this interminable host! The same fundamental idea appears to us in thousands of modifications, one yet more elegant and capricious than the other. Thus the passion of the shell collector is as conceivable as that of the lover of choice flowers, and when we read that rich tulip-amateurs have given thousands of florins for one single bulb, we cannot wonder that many of the Volutes, Cones, Mitres, and Harps, are worth several times their weight in gold; that more than a hundred pounds have been paid for a Chinese wentle-trap, and that the CyprÆa aurora, which the Polynesian chiefs used to wear about the neck, is valued at thirty or forty guineas. Orange Cone-Shell. Mitre-Shells. Harp-shell. The mode in which these beautifully painted structures are formed is very similar to what takes place among bivalve shells. They are secreted by the glandular margin of the mantle or soft skin which clothes the upper part of the body of the snail, and their form depends on the shape of the body they are destined to cover, while the outline of the border is alike regulated by that of the mantle. In the border of the mantle Chinese Wentle-trap.—(Scalaria pretiosa.) However different the form of a shell may be, its use is invariably the same, affording the soft-bodied animal a shield or retreat against external injuries. In this respect it is not uninteresting to remark that those species which inhabit the littoral zone, and are most exposed to the violence of the waves, have a stronger shell than those which live in greater depths, and that the fresh-water molluscs have generally a much more delicate and fragile coat than those which live in the ocean. The greater the necessity of protection the better has Nature provided for the want. Thus most of the gasteropods, besides possessing a stone-hard dwelling, are also furnished at the extremity of the foot with an operculum, or calcareous lid, which fits exactly upon the opening of their house, and closes it like a fortress against the outer world. But no animal exists that is safe against every attack, for the large birds sometimes carry the ponderous sea-snails, whose entrance they cannot force with their beaks, high up into the air, and let them fall upon the rocks, where they are dashed to pieces. The ordinary mode of locomotion of the testaceous sea-snails Pteroceras scorpio. Oliva hispidula. Strombus pes pelicani. Ianthina communis. The IanthinÆ, or purple Sea-Snails, carry under their foot a vesicular organ like a congeries of foam-bubbles, that prevents creeping, but serves as a buoy to support them at the surface of the water. Murex haustellum. When the sea is quiet, these little creatures, Like little wanton boys that swim on bladders, appear in vast shoals on the surface, but as soon as the wind ruffles the ocean, or an enemy approaches, they at once empty their air-cells, contract their float, and sink to the bottom, pouring out at the same time a darkened fluid like that of the Aplysia or the Murex, which no doubt serves them as a defence against their foes, and, according to Lesson, furnished the celebrated purple of the ancients. The IanthinÆ inhabit the Mediterranean and the warmer regions of the Atlantic, but especially towards the close of summer they are frequently drifted by the Gulf Stream to the west coast of Ireland. Magilus antiquus. Worm-Shell. While the vast majority of the gasteropods either creep or swim, some are doomed to the sedentary life of the oyster, and remain for ever fixed to the spot where they first attached themselves as small free-swimming larvÆ. Thus the Magilus antiquus, which in its young state presents all the characters of a regular spiral univalve, establishes itself in the excavations of madrepores, and as the coral increases around it, the Magilus is obliged, in order to have its aperture on a level with the surrounding surface, to construct a tube, lengthening with the growth of the coral. As the tube goes on increasing, the animal abandons the spiral for the tubular part of the shell, and in the operation it leaves behind no partitions, but secretes a compact calcareous matter which reaches to the very summit of the spiral part, so that in an old specimen the posterior part of the shell presents a solid mass. The SiliquariÆ are generally found embedded in a similar manner in sponges or other soft bodies, while the Vermetus, or Worm-Shell, usually attaches itself, like the SerpulÆ, to rocks, coral-reefs, or shells. In these genera, which have been arranged by Cuvier in a separate order (Tubulibranchiata), the foot is naturally reduced to the state of an adhesive organ, its chief functions consisting in opening and closing the lid. The sea-snails are either predaceous or herbivorous; among the pectinibranchiates, those with circular mouths to the shell are vegetable feeders, while such as have an aperture ending in a canal are animal feeders. Considerable modifications of internal structure indicate this difference of food; and the external organs, particularly about the mouth, exhibit a corresponding variety of form. In those which feed on vegetables the mouth is generally a slit furnished with more or less perfect lips, armed with a simple cutting apparatus, which is often powerful enough to divide or dismember comparatively hard substances. In most animal feeders the mouth presents the appearance of a proboscis that can be protruded or shortened at the will of the animal, and which, grasping the food, conveys it to a spine-armed tongue, by the aid of which it is propelled into the gullet without mastication or any preparatory change. In the Whelk and its shell-boring allies, the alternate protrusion and retraction of the proboscis, which is here of a much more complicated structure, causes the sharp tongue to act as a rasp or auger, capable of drilling holes into the hardest shells. It is this circumstance which renders the whelk so formidable an enemy to mussel and oyster banks. During the erection of Bell Rock lighthouse, an attempt was made to plant a colony of mussels on the wave-beaten cliff, as they were likely to be of great use to the workmen, and especially to the light keepers, the future inhabitants of the rock; but the mussels were soon observed to open and die in great numbers. "For some time," says Mr. Stevenson in his interesting narrative, "this was ascribed to the effects of the violent surge of the sea, but the Buccinum lapillus having greatly increased, it was ascertained that it had proved a successful enemy to the mussel. The buccinum was observed to perforate a small hole in the shell, and thus to suck out the finer parts of the body of the mussel; the valves of course opened, and the remainder of the shell-fish was washed away by the sea. The perforated hole is generally In the genera which have no proboscis, the tongue, acting as a prehensile and rasping or abrading organ, is frequently of considerable length; thus, in the Ear-shell, it is half as long as the body, and in the common Limpet even three times longer than the entire animal. From the two cartilaginous pieces (b b), placed on each side of its root, arise the short and powerful muscles which wield the organ. The surface of this curious piece of mechanism, a magnified view of which is given at B, is armed with minute, though strong, teeth, placed in transverse rows, and arranged in three series; each central group consists of four spines, while those on the sides contain but two a-piece. It is only at its anterior extremity (d), however, that the tongue, so armed, presents that horny hardness needful for the performance of its functions, the posterior part being comparatively soft; so that, probably in proportion as the anterior part is worn away, the parts behind it gradually assume the necessary firmness, and advance to supply its place. In the upper part of the circumference of the mouth, we find a semicircular horny Many of the Gasteropods which live on coarse and refractory materials are provided with several digestive cavities, resembling in some degree the stomachs of the ruminating quadrupeds; and frequently the triturating power of these organs is still further increased by their being armed with teeth variously disposed.
In the Bulla, for instance, a genus belonging, like the sea-hares, to the tectibranchiate order, the gizzard, or second stomach, contains three plates of stony hardness attached to its walls, and so disposed that they perform the part of a most efficacious grinding mill. Gizzard of SyllÆa. On opening the gizzard of the ScyllÆa, it is found to be still more formidably armed, for in its muscular walls there are embedded no less than twelve horny plates (e), which are extremely hard and as sharp as the blades of a knife. The Sea-hare, however, furnishes us with the most curious form of these stomachal teeth, for here we see not only the gizzard (b) armed with horny pyramidal plates, whose tuberculated apices, meeting in the centre of the organ, must necessarily bruise by their action whatever passes through that cavity, but the third stomach (d) is also studded with sharp-pointed hooks (c), resembling canine teeth, and admirably adapted to pierce and subdivide the tough leathery fronds of the olive sea-weeds on which the animal feeds. Thus these deformed and disgusting molluscs afford us one of the most interesting examples of the adaptation of organs to their Compound stomach of Sea-Hare. Though not so gifted as the cephalopods, many of the gasteropods possess all the organs of sense. Like them, they have an apparatus specially calculated to appreciate sonorous undulations, and consisting of a membranous vesicle attached to an auditive nerve, and containing either a single spherical otolithe or a larger number of similar smaller calcareous bodies, which by their vibrations communicate the impression of sound to the nerve. Their minute eyes are short-sighted, it is true, and frequently either entirely wanting or, as in the Nudibranchiates, scarcely able to distinguish light from darkness; but their inactive habits require no wide field of vision, and thus they see as much of the external world as is necessary for their Tentacles and eye of Murex. c. Eye highly magnified. Many of the Gasteropods are evidently capable of perceiving odours; thus, animal substances let down in a net to the bottom will attract thousands of NassÆ in one night. We also may infer that they are not deficient in taste from the presence of papillÆ at the bottom of their mouth, analogous to those found on the tongue of other animals; but, of all their senses, that of touch is undoubtedly the most perfect. The whole soft surface of the body is indeed of exquisite sensibility, but more especially the vascular foot, and the tentacles, or horns, which vary both in number and in shape in different genera. Yet, in spite of this delicacy in the organisation of the skin, which makes it so sensible of contact, it appears to have been beneficently ordered that animals so helpless and exposed to injury from every quarter are but little sensible to pain. Although they are deprived of all higher instincts, we find among the Gasteropods a few examples of concealment under extraneous objects, which remind us of the masks and artifices frequently employed by the insects and crustaceans. The Agglutinating Top (Trochus agglutinans) covers itself with small stones and fragments of shells, and thus shielded from the view escapes the voracity of many an enemy but little suspecting the savoury morsel hidden under the mound of rubbish which he disdainfully passes by. In animals which are only provided with passive means of Yet, in spite of all their prudence and of the protection of their stony dwellings, they serve as food to a host of powerful enemies. The sea-stars, their most dangerous foes, not only swallow the young fry but also seize with their long rays the full-grown gasteropods, and clasp them in a murderous embrace. They are preyed upon by fishes, crustaceans, and sea-birds, who pick them up along the shores; but it will sometimes happen that a crow, while endeavouring to detach a limpet for its food, is caught by the tip of its bill, and held there until drowned by the advancing tide. Man also consumes a vast number of sea-snails, for on every coast there are some edible species; and it may be said that, with the exception of very few that have a disagreeable taste, they are all of them used as food by the savage. The miserable inhabitants of Tierra del Fuego chiefly live upon a large limpet that abounds on the rocky shores of their inhospitable land, and but for this resource would most likely long since have been extirpated by hunger. Many of the univalve shells are, moreover, highly prized as objects of ornament or use both by savage and civilised nations. The South Sea Islander makes use of a Triton as a war conch; the Patagonian drinks out of the Magellanic volute, the Arab of the Red Sea employs a large Buccinum as a water-jug, and the CyprÆa moneta is well known in commerce as the current coin of the natives of many parts of Africa. In Europe the iridescent Haliotis is frequently used for the inlaying of tables or boxes, and various species of Helmet-shells and Strombi (Cassis rufa madagascariensis, Strombus gigas), peculiar as being formed of several differently coloured layers, placed side by side, are in great request for the cutting of cameos, as they are soft enough to be worked with ease, and hard enough to resist wear. More than two hundred thousand of these shells are annually The Pteropods, or Wing-footers, move about by means of two fin-like flaps, proceeding wing-like from the fore part of the body. They have no disk to walk upon, nor arms for the seizure of prey, like the cephalopods and gasteropods, but resemble them by the possession of a head distinct from the rest of the body, which some, like the Hyaleas and Cleodora, conceal in a thin transparent or translucent shell, in which they also hide their head and wings at the approach of danger, and immediately sink to the bottom; while others, like the blue and violet Clios, beautifully variegated with light red spots, are perfectly naked. They generally inhabit the high seas, and are but rarely drifted by storms or currents into the neighbourhood of the land. They mostly swim about freely, but sometimes also they are found clinging by their wings to floating sea-weeds. They are small creatures, but propagate so fast that the Clio borealis and Limacina arctica form the chief food of the colossal whale. Hyalea globulosa. While these two little pteropods, in spite of their minute proportions, deserve to rank among the most important inhabitants of the northern seas, the Mediterranean species belong mainly to the genera Hyalea, Cleodora, and Criseis—forms wholly unknown to our own fauna except as waifs. Vast shoals of these animals frequent the deeper parts of that sea, leaving their remains strewed over its bed, between depths of from one hundred to two hundred fathoms; they are short-lived creatures, and have their seasons, being met with near the "The pteropods are the winged insects of the sea," says M. Godwin-Austen, "reminding us, in their free circling movements and crepuscular habits, of the gnats and moths of the atmosphere; they shun the light, and if the sun is bright, you may look in vain for them during the life-long day—as days sometimes are at sea; a passing cloud, however, suffices to bring some CleodorÆ to the surface. It is only as day declines that their true time begins, and thence onwards the watches of the night may be kept by observing the contents of the towing-net, as the hours of a summer day may be by the floral dial. The CleodorÆ are the earliest risers; as the sun sets, HyalÆa gibbosa appears, darting about as if it had not a moment to spare, and, indeed, its period is brief, lasting only for the Mediterranean twilight. Then it is that HyalÆa trispinosa and Cleodora subula come up; HyalÆa tridentata, though it does not venture out till dusk, retires early, whilst some species, such as Cleodora pyramidata, are to be met with only during the midnight hours and the darkest nights. This tribe, like a higher one, has its few irregular spirits, who manage to keep it up the whole night through. All, however, are back to their homes below before dawn surprises them." The lamellibranchiate Acephala, or headless molluscs with comb-like gills, are distinguished from the preceding orders of molluscs by a more simple organisation and the peculiar formation of their external coverings. They are all contained within a bivalve shell, articulated after the manner of a hinge, and to which some of their families are attached by one strong muscle (Monomyaria), others by two (Dimyaria). In this shell, which is secreted by two large flaps or folds of their skin or mantle, they generally lie concealed like a book in its binding, and bid defiance to many of their enemies. When danger menaces, the sea-snail withdraws its head and closes the entrance of its hermitage with a lid, but the bivalve shuts its folding-doors when it wishes to avoid a disagreeable intruder. A strong elastic While the sea-snail creeps along upon a mighty foot, the bivalve is frequently doomed to a sedentary life, and the former protrudes from its shell a well-formed head, while the latter, like many a biped, has no head at all. The lamellibranchiate Acephala have, however, been treated by nature not quite so step-motherly as might be supposed from this deficiency, for many of them have eyes, or at least ocular spots, which enable them to distinguish light from darkness; and even auditory organs have been discovered in many of them. Their circulation is performed by a heart generally symmetrical, and their respiration by means of four branchial leaflets equal in size, and symmetrically arranged on either side of the body. The mouth is a simple orifice without any teeth, bordered by membranous lips, and placed at one end of the body between the two inner leaves of the branchiÆ. The digestive apparatus consists of a stomach or intestine of different lengths, a liver, and several other accessory organs. A simple nervous system brings all the parts of the body into harmonious action. Bivalve deprived of shell, to show its various openings. In many lamellibranchiates the folds of the mantle are disjoined, as, for instance, in the oyster, which, on opening its shell, at once admits the water to its delicately fringed branchiÆ; in others they are more or less united, so as to form a closed sack with several openings, an anterior one (h) for the passage of the foot, and two posterior ones (g, f) for the ingress and egress of the water which the animal requires for respiration. These posterior openings are often prolonged into shorter or longer tubes or siphons, sometimes separate, and sometimes grown together so as to form a single elongated fleshy mass. The use of these prolongations becomes at once apparent when we consider that they are chiefly developed in those species which burrow in sand, mud, wood, or stone, and which therefore require to Donax. a, b. Siphons. The fragile shell of the pholades seems to have prompted them to seek a better protection in the hard rock; a similar necessity may have induced the ship-worm to drill a dwelling in wood. Its shells, which are only a few lines broad, are very small compared with the size of the vermiform body, and are Pholas striata. Ship-worm.—(Teredo navalis.) But while blaming the teredo for its damages, justice bids us not pass over in silence the services which it renders to man. If it here and there destroys useful constructions, on the other hand, it removes the wrecks that would otherwise obstruct the entrance of rivers and harbours; and we may ask whether these services do not outweigh the harm it causes. The pholades also belong to the noxious animals; they perforate the walls and calcareous jetties which man opposes to the fury of the sea, or raises for the creation of artificial harbours and landing places, destroy their foundations, and gradually cause their destruction. Petunculus. a. Foot. The foot of the lamellibranchiates presents a great variety of form, and is found in various degrees of development, gradually passing into a rudimentary state, until finally it is completely wanting in the oyster family. In most of those which live at large it is strong and muscular, serving either as an excellent spade for speedy concealment in the sand when an Even some of those which have but a very rudimentary foot, incapable of subserving locomotion, are able to move from place to place by the sudden opening or shutting of their valves. In this manner the scallop, which inhabits deep places, where it lies on a rocky or shelly bottom, swims or flies through the water with great rapidity, and the file or rasp mussel, a closely related genus, principally occurring in the Indian Ocean, glides so swiftly through the water that the French naturalists Quoy and Gaimard were hardly able to overtake it. Cockle. a. Foot. In the stone or wood-boring bivalves the functions of the foot with regard to locomotion are much more limited than in the Cockle, or Tellina, as they merely consist in moving the animal up and down in the cavity where it has fixed its residence. In the Razor-Shells, which will sometimes burrow to the depth of two feet, and very rarely quit their holes, the cylindrical foot, no longer fit for horizontal locomotion, serves the animal for rising or sinking in the sand, for when about to bore, it attenuates it into a point, and afterwards contracts it into a rounded form so as to fix it by its enlargement when it desires to rise. In places where the razor-shells abound, they are sought after as bait for fish, and taken in spite of their mole-like facility of concealment, for when the tide is low, their retreat is easily recognised by the little jet of water they eject when alarmed by the motion of the fishermen above. Having thus detected their burrow, the wily enemy who is well aware that, though inhabiting the salt water, the Solen does not like too much of a good thing, merely throws some salt into the hole, The pholades, which have very delicate milk-white valves, burrow holes in limestone or sandstone rocks, though occasionally they content themselves with houses of clay or turf. How creatures invested with shells as thin as paper and as brittle as glass are able to work their way through hard stone has long been a puzzle to naturalists, some of whom asserted that they attained their object by means of an acid solvent, others that they bored like an auger by revolving; but recent investigations have discovered that their short and truncated foot is the chief instrument they use in their mining operations, being provided at its base with a rough layer of sharp crystals of flint, which, when worn off, are soon replaced by others, and act as excellent files. Solen, or Razor-Shell. a. Foot. In several of the sedentary genera the rudimentary foot, though incapable of locomotion, makes itself useful by spinning a bundle of silken threads, called byssus, or beard, which serve to anchor the animal to any solid submarine object as firmly as a ship in harbour. Generally the connection is permanent, but some species, among others the edible mussel, are able to detach the filaments from the glandular pedicle situated at the inferior base of the foot which originally secreted them, and then to seek another point of attachment. If the byssus be examined under a powerful lens, before any of the filaments are torn, it is easy to perceive that these are fixed to submarine bodies by means of a small disc-like expansion of their extremities of various extent, according to the genus and species. Certain genera are celebrated for the abundance and fineness of their byssus; that of the PinnÆ, or Wing-Shells, among others, which are very common in some parts of the Mediterranean, and attain a considerable size, is so long and firm that in Naples it is sometimes manufactured Thus we find in the same class of animals the same organ most variously modified in form and structure; now serving as a foot, now as a spade, or as a rasp, or as a spinning machine, and, throughout all these modifications, admirably adapted in every case to the mode of life of its possessor. Pinna. c. Pedicle from which the filaments are detached. d. Inferior base of the foot. The whole construction, and generally the extremely restricted locomotion, of the bivalves tells us at once that they are unable to attack their prey, but must be satisfied with the food which the sea-currents bring to the door of their shells, or within the vortex of their branchial siphons. But they have as little reason to complain as the equally slow or sessile polyps, bryozoa, and ascidians, for the waters of the ocean harbour such incalculable multitudes of microscopic animals and plants that their moderate appetite never remains long unsatisfied. The same streams which aËrate their blood also convey to their mouth all the food which they require. Deprived of more active weapons, most bivalves rely upon their shells as their best means of defence, and to answer this purpose, their stony covering must naturally increase in solidity the more its owner is exposed to injury. The pholades, lithodomes, and teredines, which scoop out their dwellings in stone or wood, and thus enjoy the protection of a retrenched camp, can do with a thin and brittle or even with a mere rudimentary shell. The solens, which at the least alarm bury themselves deeper and deeper in the sand, likewise require no closely-fitting valves; but the oysters or mussels, which have no external fortress to retire to, and are unable to move from the spot, would Bernardin de St. Pierre, in his "Studies of Nature," points out another admirable provision for the safety of molluscs. Thus, those which crawl and travel, and can consequently choose their own asylums, are in general those of the richest colours. Such, among the Gasteropods, are the gaudily-tinted Nerites, and the polished marbled Cowries, the Olives, richly ornamented with three or four colours, and the Harps, which have tints as rich as the most beautiful tulips; while among the bivalves the vivacious Pectens, coloured scarlet and orange, and a host of other travelling shells, are impressed with the most lively colours. But those which do not swim, as the Oysters, which are adherent always to the same rocks, or those which are perpetually at anchor, as the Pinnas and Mussels, or those which repose on the bosom of Madrepores, such as the Arcs, or those which are entirely buried in the calcareous rocks, as the Lithodomi, or those which immovably, by reason of their weight, pave the surface of the reefs, as the Tridacna, are of the colour of the bottoms or floors which they respectively inhabit, in order, no doubt, that they shall be less perceived by their enemies. But even so the best guarded of the bivalves fall a prey to innumerable enemies, and when we see the strand covered for miles and miles with their dÉbris, we may rest assured that but few of the quondam inmates of these fragmentary shells have died a natural death. Annelides and Sea-snails, crustaceans and star-fishes, strand birds and even quadrupeds, all fatten upon their delicate flesh, and man devours incalculable numbers. Edible Cockle. In vain the Pholas buries itself in stone, or the cockle in the sand; their security was at an end as soon as man had found out that they were grateful to the palate. The former was reckoned a delicacy by the ancients, and the latter is preferred by some to the oyster itself. So much is certain, that, during the years of famine caused by the potato disease, it preserved the lives of many of the poor Shetlanders and Orcadians. The Razor-Shells, particularly when roasted, and the Clam-Mussels, which are not only a favourite The common Mussel (Mytilus edulis), which is found in the littoral zone on almost every rocky shore, is eaten in vast numbers by the coast inhabitants, and carried in enormous masses into the interior of the country; it furnishes an equally cheap and agreeable food, but is not easy of digestion, and sometimes produces symptoms of poisoning, which have been ascribed to the eggs of asterias, on which it feeds during the summer. In the northern countries it is also in great request as a bait for cod, ling, rays, and other large fishes that are caught by the line. In the Frith of Forth alone from thirty to forty millions of mussels are used for this purpose, and in many places they are enclosed in gardens, the ground of which is covered with large stones, to which they attach themselves by their byssus or beard. Edible Mussel. It is a curious fact that the rearing of mussels should have been introduced into France as far back as the year 1235, by an Irishman of the name of Walton. This man, who had been shipwrecked in the Bay de l'Aiguillon, and gained a precarious living by catching sea-birds, observed that the mussels, which had attached themselves to the poles on which he spread his nets over the shallow waters, were far superior to those that naturally grow in the mud, and immediately made use of his discovery by founding the first "bouchot," or mussel-park, consisting of stakes and rudely interwoven branches. His example soon found imitators, and, strange to say, the method of construction adopted by Walton, six centuries ago, has been maintained unaltered to the present day. It may give some idea of the immense resources that might be obtained from so many utterly neglected lagunes when we hear that the fishermen of l'Aiguillon, although they sell three hundredweight of mussels for the very low sum of five francs, or four shillings, annually export or send them into the interior to the amount of a million or twelve hundred thousand francs. The praise which Pliny bestowed on the oyster, calling it the palm or glory of the table, is still re-echoed by thousands of Three sorts of oysters are distinguished in the trade. The first comprises those which are dredged from the deeper banks. These are the largest-sized, but also the least valued. The second consists of those that are gathered on a more elevated situation. Being accustomed to the daily vicissitudes of ebb and flood, they retain their water much longer, and can therefore be transported to much greater distances than the former. Those are preferred that grow on a clear bottom near the estuaries of rivers. The third and most valued sort of oysters are those that are cleaned and fattened in artificial parks or stews. This branch of industry was already known to the Romans, and Pliny tells us that Sergius Orata, a knight, was the first who established an artificial basin for the cultivation of oysters, and realised large sums of money by this ingenious invention. At present Harwich, Colchester, Whitstable, and many other The renowned oyster-parks of Ostend, the oldest of which celebrated its hundredth anniversary in 1860, are extensive walled basins, communicating by sluices with the open sea, so that the water can be let in and out with every returning tide. As microscopic algÆ and animalculÆ are produced in much greater numbers in these tranquil reservoirs than in the boisterous sea, the oysters find here much more abundant food, and being detached one from the other, they can also open and close their shells with greater facility, so that nothing hinders their growth. Thus fostered and improved by constant attention, they are greatly superior in flavour to the rough children of nature that are sent without any further preparation to market and condemned to the knife soon after having been dragged forth from their submarine abode. The highly prized green oysters owe their colour to the number of ulvÆ, enteromorphÆ, and microscopic infusoriÆ, that are abundantly generated in the parks, and communicate their verdant tinge to the animal that swallows them. In spite of their high price, which unfortunately debars the poorer classes from their enjoyment, the consumption of oysters is immense; so that in a commercial point of view they are by far the most important of all the mollusc tribes. Of the quantities eaten in London alone, it is impossible to give even an approximate guess, as no reliable statistics can be arrived at. Exclusive of those bred in Essex and Kent, in the rivers Crouch, Blackwater, and Colne, and in the channel of the Swale and the Medway, vast numbers are brought from Jersey, Poole, and other places along the coast. The Channel Islands alone, which export about 100,000 bushels a year, send a great part of their oysters to the metropolitan market. The luxurious tables of Paris likewise consume unnumbered millions, and when we consider that, thanks to the railroad, even the most distant inland towns of the Continent may now be supplied with Ostend oysters, we cannot wonder that their price has risen enormously with the constantly increasing demand. This great augmentation of value has naturally directed attention to the creation of new oyster-banks, and to the better management of those already existing, and fortunately the manner in which the mollusc propagates renders its culture in appropriate localities a by no means difficult task. The oyster spawns from June to September. Instead of immediately abandoning its eggs to their fate, as is the case with so many sea-animals, it keeps them for a time in the folds of its mantle, between the branchial lamellÆ, and it is only after having thus acquired a more perfect development that the microscopic larvÆ, furnished with a swimming apparatus and eyes, emerge from the shell, and are then driven about by the floods and currents, until they find some solid body to which they attach themselves for life. In this manner the oyster produces in one single summer a couple of millions of young, which, however, mostly perish during the first wandering stage of their existence. Thus we see what rich rewards may be gained by protecting and fixing the oyster-larvÆ at an early date; and that this can be done in many places without any great outlay of capital is proved to us by successful examples both in ancient and modern times. Between the Lucrine Lake, the ruins of CumÆ, where of yore the Sibyl uttered her ambiguous oracles, and the promontory of Misenum, lies a small salt-water lake, about a league in circumference, generally from three to six feet deep, and reposing on a volcanic, black, and muddy bottom. This is the old Acheron of Virgil, the present Fusaro. Over its whole extent are spread from space to space great heaps of stones, that have been originally stocked with oysters brought from Tarentum. Round each of these artificial mounds stakes are driven into the ground, tolerably near each other, and projecting from the water, so as to be pulled up easily. Other stakes stand in long rows several feet apart, and are united by ropes, from which bundles of brushwood hang down into the water. All these arrangements are intended to fix the oyster-dust, that annually escapes from the parental shells, and to afford it a vast number of points to which it may attach itself. After two or three years the microscopic larvÆ have grown into edible oysters. Then, at the proper season, the stakes and brushwood bundles are taken out of the water, and after the ripe berries of the marine vineyard Between March and May 1859 a quantity of oysters taken from different parts of the sea were distributed in ten longitudinal beds in the Bay of St. Brieux, on the coast of Brittany. The bottom was previously covered with old oyster-shells and boughs of trees arranged like fascines, which afford a capital holding-ground for the spat. In 1860 three of the fascines were taken up indiscriminately from one of the banks, and found to contain about 20,000 oysters each, of from one inch to two inches in diameter. The total expense for forming the above bank was 221 francs, and reckoning the number of oysters on each of the 300 fascines laid down on it at only 10,000, these sold at the low price of 20 francs a thousand would produce the sum of 60,000 francs, thus yielding a larger profit than any other known branch of industry. Encouraged by these successful examples, an English company has obtained a grant by Act of Parliament of a piece of fore shore lying between the Whitstable and Faversham Oyster Companies' beds, and thus admirably situated for receiving a large quantity of floating spawn from these establishments. There can be no doubt that oyster cultivation will spread further and further, and that ultimately all the worthless bays and lagunes along our coasts will be converted into rich oyster-fields, yielding a good profit to their owners and enjoyment to millions of consumers. A shell nearly related to the oyster produces the costly pearls of the East that have ever been as highly esteemed as the diamond itself. The most renowned pearl-fisheries are carried on at Bahrein, in the Persian Gulf, and in the Bay of Condatchy, in the island of Ceylon, on banks situated a few miles from Ceylon Pearl-Oyster. While the fishing goes on, a number of conjurors and priests The Pacific also furnishes these costly ornaments to wealth and beauty, but the pearls of California and Tahiti are less prized than those of the Indian Ocean. Pearl-like excrescences likewise form on the inner surface of our oysters and mussels, and originate in the same manner as the true pearls. The formation of the pearl, however, is not yet quite satisfactorily accounted for. Some naturalists believe that the animal accumulates the pearl-like substance to give the shell a greater thickness and solidity in the places where it has been perforated by some annelide or gasteropod; and according to Mr. Philippi, an intestinal worm stimulates the exudation of the pearl-like mass, which, on hardening, encloses and renders it harmless. Brilliancy, size, and perfect regularity of form are the essential qualities of a beautiful pearl. Their union in a single specimen is rare, but it is of course still more difficult to find a number of pearls of equal size and beauty for a costly necklace or a princely tiara. Nature has given the bivalves the same beauty of colouring Tridacna gigas. The gigantic Tridacna, which is now to be found in the shop of every dealer in shells, was formerly an object of such rarity and value that the Republic of Venice once made a present of one of them to Francis I., who gave it to the Church of St. Sulpice in Paris, where it is still made use of as a basin for holy water. The tridacna attains a diameter of five feet, and a weight of five hundred pounds, the flesh alone weighing thirty. The muscular power is said to be so great as to be able to cut through a thick rope on closing the shell. It is found in the dead rocks on the coral reefs, where there are no growing lithophytes except small tufts. Generally only an inch or two in breadth of the ponderous shell is exposed to view, for the tridacna, like the pholas, has the power of sinking itself in the rock, by removing the lime about it. Without some means like this of security, its habitation would inevitably be destroyed by the roaring breakers. A tuft of byssus, however strong, would be a very imperfect security against the force of the sea for shells weighing from one to five hundred pounds. It Like the Lamellibranchiate Acephala, the Brachiopods are covered with a bivalve shell, but their internal organisation is very different. Instead of being disposed in separate gills, their respiratory system is combined with the ciliated mantle on which the vascular ramifications are distributed, but their most striking feature is the possession of spiral fringed arms or buccal appendages which serve to open the shell and occupy the greater part of its cavity. These curious organs are in some Brachiopods quite free, in others attached to a complicated cartilaginous or calcareous skeleton. None of the existing molluscs of this class are capable of changing place, but are either fixed to extraneous substances by the agglutination of one of their valves or by a muscular peduncle passing through a perforation of their shells. There are no more than forty-nine living species, chiefly belonging to the genera Terebratula and Crania, and generally found at great depths in the Southern Ocean; but the fossil remains of 1,370 species prove their importance in the primitive seas, where they rivalled the lamellibranchiates in numbers and variety. Though now so rare or so local in the British seas that ordinary collectors are not likely to meet with any, they abound in many of our oldest rocks. "A visit to the quarries at Dudley," says E. Forbes, "or an Irish lime-kiln, or an oolitic section on the Dorsetshire coast, or a green sand ravine in the Isle of Wight, will afford Leaf-like Sea-Mat. At the lower extremity of the great series of molluscous animals we find the Polyzoa (Bryozoa, or Sea-Mosses) and Tunicata. The former, which comprise the Sea-Mats (FlustrÆ, EscharÆ), the Sea-Scurfs (LepraliÆ), the Retepores, the CellulariÆ, and several other families, were formerly reckoned among the polyps, whom they greatly resemble in appearance and mode of life, but far surpass by the complexity of their internal organisation. The Sea-Mats are among the commonest objects which the tide casts out upon our shores, for you will hardly ever walk upon the strand without finding their blanched skeletons among the relics of the retiring flood. Their flat leaf-like forms might easily cause them to be mistaken for dried sea-weeds, but a pocket-lens suffices to show that they are built up of innumerable little oblong cells, placed back to back like those of a honey-comb, and each crowned by four stout spines, which give their surface a peculiarly harsh feel when the finger is passed over it from the apex to the base. "The individual cells," says Mr. Gosse, "are shaped like a child's cradle, and if you will please to suppose some twenty thousand cradles stuck side to side in one plane, and then turned over, and twenty thousand more stuck on to these bottom to bottom, you will have an idea of the framework of a flustra. And do not think the number outrageous, for it is but an ordinary average. I count in an area of half an inch square sixty Before the stormy tide detached them from the bottom of the sea, and left them to perish on the shore, each of the cells contained a living creature whose mouth was surrounded by a coronet of filiform and ciliated tentacles, destined to produce a vortex in the water, and thus to provide the tiny owner with its food. The body was bent on itself somewhat like the letter V, the one branch (a) being the mouth and throat, the other (b) the rectum, opening by an anus, and the middle part (c) the stomach. Each of these tiny members of the flustra colony possessed a considerable number of muscles; each was furnished with a movable lip or lid to block up the entrance of his cell when he courted retirement; each had his individual nerves, and consequently his individual sensations, though feeling and moving simultaneously with his fellow citizens by the agency of a system of nerves common to the whole republic, and sending forth a delicate filament to the inmate of each cell. Flustra in its cell. (Highly magnified.) Such are the wonders which but for the microscope would for ever have remained unknown to man. The EscharÆ greatly resemble the FlustrÆ, for here also the cells are disposed side by side upon the same plane, so as to form a broad leaf-like polyzoary, which, however, is not of a horny or coriaceous texture, as in the latter genus, but completely calcified, so as to present something of the massiveness of the stony corals. The annexed wood-cuts, showing us Eschara cervicornis, first A, in its natural size; then B, a few cells magnified twenty diameters, and ultimately C, a single individual so highly magnified as to reveal some of the details of its otherwise invisible structure, give us a good idea of the truly remarkable organisation of the Polyzoa. In the EscharÆ and FlustrÆ the cellular extension of the Eschara cervicornis. (Natural size.) Portion of a branch of the polypary of Eschara cervicornis, magnified twenty diameters, to show the form and arrangement of cells. In cabinets of natural history, the species commonly called Neptune's ruffles will rarely be found wanting. It is a native of the Mediterranean, but individuals of a smaller size are also found in the British seas. An individual of Eschara cervicornis, highly magnified. a. Tentacula b. First digestive cavity. d. Stomach. f. Anus. Retepora cellulosa. (Neptune's Ruffle.) The LepraliÆ, or Sea-Scurfs, form thin calcareous crusts of a white-yellow or reddish colour on rocks, shells, and sea-weeds. To the naked eye they appear as rude unsightly It would lead me too far were I minutely to describe the CellulariÆ with their cells disposed in alternating rows on narrow bifurcated branches; the Tubulipores, with their mouths at the termination of tubular cells without any movable appendage or lip; the Bowerbankias and Lagunculas, with their creeping stems and separate cells; suffice it to say that a wonderful exuberance of fancy displays itself in the structure of the numerous varieties of the Polyzoa. A. Portion of a Cellularia, magnified. B. A Bird's Head Process, more highly magnified, and seen in the act of grasping another. But a closer inspection reveals still greater miracles to the marine microscopist, for most genera, and chiefly the CellulariÆ, possess very remarkable appendages, or processes, presenting the most striking resemblance to the head of a bird. Each of these processes, or "aviculariÆ," as they have been named, has two "mandibles," of which one is fixed like the upper jaw of a bird, the other movable like its lower jaw; the latter is opened and closed by two sets of muscles, which are seen in the interior of the head, and between them is a peculiar body, furnished with a pencil of bristles, which is probably a tactile organ, being brought forwards when the mouth is open, so that the bristles project beyond it, and being drawn back when the mandible closes. During the life of the It is still very doubtful what is their precise function in the economy of the animal; whether it is to retain within reach of the ciliary current bodies that may serve as food, or whether it is like the pedicellariÆ of the sea-urchins to remove extraneous particles that may be in contact with the surface of the polyzoary. The latter would seem to be the function of the "vibracula," which are likewise pretty generally distributed among the polyzoa. Each of these long bristle-shaped organs, springing at its base out of a sort of cup, that contains muscles by which it is kept in almost constant motion, sweeps slowly and carefully over the surface of the polyzoary, and removes what might be injurious to the delicate inhabitants of the cells, when their tentacles are protruded. So carefully have these lowly molluscs been provided for! The polyzoa can neither hear nor see, at least as far as we are able to ascertain, but the delicacy of their sense of touch is very great. "When left undisturbed in a glass of fresh sea-water," says Dr. Johnston, Each polyzoon begins with a single ovum. The original or seminal cell of a flustra or lepralia has no sooner fixed itself upon some stone, shell, or alga, than new buds begin to shoot forth, which in their turn produce others from their unattached margins, so as rapidly to augment the number of cells to a very large amount. Thus a common specimen of Flustra carbasea presents more than 18,000 individual polyzoa, and as each of these has about twenty-two tentacula, which are again furnished with about a hundred ciliÆ a piece, the entire polyzoary presents no less than 396,000 tentacula and 39,600,000 ciliÆ. The Rev. David Landsborough calculated that a specimen of Flustra membranacea five feet in length by eight inches in breadth had been the work and the habitation of above two millions of inmates, so that this single colony on a submarine island was about equal in number to the population of Scotland. As the tentacula are numerous in this species, four thousand millions of ciliÆ must have provided for its wants, about four times the number of the inhabitants of this globe! Clavellina producta. Group of two adult and several young individuals, magnified about five times. c. Branchial orifice. e. BranchiÆ. i. Anal orifice. l. Stomach. o. Heart. u, u', u. Reproductive buds, springing from the abdomen of the adults. Ascidia mammillata. a. Branchial orifice, open. b. Anal orifice, closed. The Tunicata are so called because their soft parts are not enclosed in a calcified shell such as invests the majority of their class, but in a more or less coriaceous envelope or tunic which is either bag-shaped, and provided with two apertures, or tube-shaped, and open at the ends. They present a strong resemblance to the Polyzoa, not merely in their general plan of conformation, but also in their tendency to produce composite structures by gemmation; they may, however, be at once distinguished from them by the absence of the ciliated tentacula which form so conspicuous a feature in the external aspect of a flustra or a retepore. Their branchiÆ, which have generally the form of ridges (e), occupy a large sac, forming, as it were, the antechamber of the alimentary canal, which is barely distinguishable into gullet, stomach, and intestine, and always convoluted or folded once on itself. The Tunicata are exclusively marine, and widely spread from the arctic to the tropical seas. All of them are free during the earlier parts of their existence; some remain permanently so (PyrosomidÆ, SalpÆ), but the generality (AscidiÆ, Botrylli) become fixed to shells and other marine bodies; some exist as distinct individuals (AscidiÆ, Cynthia), whilst various degrees of combination are effected by others (Botryllus, Clavellina, Pyrosoma), and some are simple in one generation and combined in the next (SalpÆ). Thus the whole family is divisible into two groups, the simple and the aggregate; both branching out into numerous genera, of which my limits only allow me to mention some of the most remarkable. The simple AscidiÆ, or Sea-Squirts, are very common on our shores. "Rarely," says Forbes, "is the dredge drawn up from any sea-bed at all prolific in submarine creatures without containing few or many of their irregularly shaped leathery bodies, fixed to sea-weed, rock, or shell, by one extremity, or by one side, free at the other, and presenting two more or less prominent orifices, from which, on the slightest pressure, the sea-water is ejected with great force. On the sea-shore, when the tide is out, we find similar bodies attached to the under surface of rough stones. They are variously, often splendidly, coloured, but otherwise are unattractive or even repulsive in aspect. Some are of a large size, several inches in length. As may easily be imagined, they lead a very inactive life, except in the young state, when by means of a long tail they rapidly swim about, until finally settling in some convenient spot, they gradually assume the form and adopt the quiet life of the parent from which they sprang." To the simple Tunicata belong also the Chelyosomata, whose coriaceous envelope, consisting of eight somewhat horny angular plates, reminds one of the carapace of the turtle. Their small and prominent orifices, perforating the plated surface, are each surrounded by six triangular valvules. Some species of simple Ascidians on the coasts of the Channel and the Mediterranean are valued as articles of food. At Cette sea-squirts are taken regularly to market, and Cynthia microcosmus, although so repulsive externally, furnishes a very delicate morsel.
Diazona violacea (magnified). A single individual of Pyrosoma giganteum, cut out of the common test and magnified. a. Branchial or external orifice. b. Anal or internal orifice. d. Stomach. e. Liver. f. BranchiÆ. While in the ClavellinidÆ the animals are connected by creeping tubular prolongations of the common tunic through which the blood circulates, the Botrylli form translucent jelly-like masses of various hues of orange, yellow, purple, blue, grey, and green; sometimes nearly uniform in tint, sometimes beautifully variegated, and very frequently pencilled as if with stars of gorgeous device; now encrusting the surface of the rock, now descending from it in icicle-like projections. They are also frequently attached to the broad-leaved fuci, investing the stalks, or clothing with a glairy coat the expanse of the fronds. "In examining their bodies," says the distinguished naturalist previously quoted, "we find that it is not a single animal which is before us, but a commonwealth of beings bound together by common and vital ties. Each star is a family, each group of stars a community. Individuals are linked together in systems, systems combined into masses. In the genus Diazona, which has its chief seat in the Mediterranean, the animals, which are very prominent and arranged in concentric circles, form a single system expanded into a disc like that of a flower or of an Actinia. The anal orifices, it will be seen, are situated close to the branchial apertures at the free end of the single animals, while in the Botrylli they open into a central excretory cavity. In the Pyrosomes we find large colonies of small individuals aggregated in the form of a cylinder open at one end. Their mouths or anterior extremities are situated on the exterior of this hollow body, which they bristle with large and longish tubercles (a), whilst the opposite or anal orifices (b) open into the cavity of the cylinder, whose smooth wall they perforate with numerous small holes. By a simultaneous action the central cavity is either narrowed or enlarged, and by this means the strange social republic glides slowly through the waters. The Pyrosomes inhabit the Mediterranean and the warmer parts of the ocean. In the former at times their abundance is a source of great annoyance to the fishermen, sometimes even completely clogging their nets, and on the high seas they are not seldom met with in almost incredible profusion. Their delicate and transparent forms, their elegant tints, and their unrivalled phosphorescence render them objects of admiration to the voyager, and entitle them to rank amongst the most resplendent living gems of the ocean.
While the sessile AscidiÆ remind one of the polyps, the transparent SalpÆ, freely swimming in the sea, bear a great resemblance to the pellucid jelly-fishes. Each resembles a crystalline tube, through which one can distinctly see the internal coloured parts. Sometimes these animals, which abound in the warmer seas, are found solitary, at other times associated in circular or lengthened groups, termed garlands, ribands, and chains; but, strange to say, these two forms so different in outward appearance are only the alternating generations of one and the same animal. The chained SalpÆ produce only solitary ones, and the latter only chains, or, as Chamisso, to whom we owe the discovery of this interesting fact, expresses himself, "a salpa mother never resembles her daughter, or her own mother, but is always like her sister, her grand-daughter, or her grand-mother." When Chamisso first made known his discovery, he was laughed at as a fanciful visionary, but all later observations have not only fully confirmed his statement but also discovered similar or even more wonderful metamorphoses among the jelly-fish, polyps, crustacea, sea-urchins, and other marine animals. Thus Chamisso gave the first impulse to a whole series of highly interesting observations, and his rank is now as well established among naturalists as it has long been among the most distinguished Inner or under side of the superior plated surface of Chelyosoma Macleayanum. a. Branchial orifice. b. Anal orifice. c. Muscles bordering the carapace-plates. d. Central hexagonal plate. e. Surrounding plates. f. The nerve-ganglion and nerve-fibres. g, h. Auditory apparatus. i. Row of tentacles, anterior to the oesophagus. j. Stomach. k. Part of the intestine. Before quitting the Tunicata, a few points of interest in their simple history remain to be noticed. Despite their humble organisation, they have a heart which, as may easily be ascertained in the transparent species, is subject to strange alternations of action. For after having received for a minute or two the blood from the branchiÆ, and propelled it to the system at large, it will at once cease to pulsate for a moment or two, and then propel the blood to the branchial sac, receiving it at the same time from the system generally. After this reversed course has continued for some time, another pause occurs, and the first course is resumed. It is very probable that many of the Tunicata are able to hear and to see. In Chelyosoma, organs have been discovered whose structure seems to indicate that they are destined for the transmission of sound, and the AscidiÆ have frequently around the extremity of their tubes a row of coloured points similar to the imperfect organs of sight present in the majority of the bivalve Acephalans. Thus a closer examination of the lower animals is constantly bringing new faculties to light, and the further we penetrate into the secrets of their life the more we find occasion to admire the power and wisdom of their Maker! |