“This is the most important result obtained in connection with the theory of gravitation since Newton’s day. Einstein’s reasoning is the result of one of the highest achievements of human thought.” These words were uttered by Sir J.J. Thomson, the president of the Royal Society, at a meeting of that body held on November 6, 1919, to discuss the results of the Eclipse Expedition. Einstein another Newton—and this from the lips of J.J. Thomson, England’s most illustrious physicist! If ever man weighed words carefully it is this Cambridge professor, whose own researches have assured him immortality for all time. What has this Albert Einstein done to merit such extraordinary praise? With the world in turmoil, with classes and races in a death struggle, with millions suffering and starving, why do we find time to turn our attention to this Jew? The answer is not hard to find. Men come and men go, but the mystery of the universe remains. It is Einstein’s glory to have given us a deeper insight into the universe. Our scientists are Huxley’s agnostics: they do not deny activities beyond our planet; they merely center their attention on the knowable on this earth. Our philosophers, on the other hand, go far afield. Some of them soar so high that, like one poet’s opinion of Shelley, the bubble bursts. Einstein, using the tools of the scientist—the experimentalist—builded a skyscraper which ultimately reached the philosophical school. His rÔle is the rÔle of alcohol in causing water and ether (the anÆsthetic) to mix. Ether and water will mix no better than oil and water, without the presence of alcohol; in its presence a uniform mixture is obtained. The Object of the Eclipse Expedition. Einstein prophesied that a ray of light passing near the sun would be pulled out of its course, due to the action of gravity. He went even further. He predicted how much out of its course the ray would be deflected. This prediction was based The Result of the Expedition. Einstein’s prophecy was fulfilled almost to the letter. The Significance of the Result. Since Einstein’s theory of gravitation is intimately associated with certain revolutionary ideas concerning time and space, and, therefore, with Fundamentals of the Universe, the net result of the expedition was to strengthen our belief in the validity of his new view of the universe. It is our intention in the following pages to discuss the expedition and the larger aspects of Einstein’s theory that follow from it. But before we do so we must have a clear idea of our solar system. Our Solar System. In the center of our system is the sun, a flaming mass of fire, much bigger than our own earth, and very, very far away. The sun has its family of eight planets—of which the earth is one—which travel around the sun; and around some of the planets there travel satellites, or moons. The earth has such a satellite, the moon. Now we have good reasons for believing that The distances between bodies in the solar system is so immense that, like the number of dollars spent in the Great War, the number of miles conveys little, or no impression. But picture yourself in an express train going at the average rate of 30 miles an hour. If you start from New York and travel continuously you would reach San Francisco in 4 days. If you could continue your journey around the earth at the same rate you would complete it in 35 days. If now you could travel into space and to the moon, still with the same velocity, you would reach it in 350 days. Having reached the moon, you could circumscribe it with the same express train in 8 days, as compared to the 35 days it would take you to circumscribe the earth. If instead of travelling to the moon you would book your passage for the sun you, or rather your descendants, would get there in 350 years, and it would then take them 10 additional years to travel around the sun. Immense as these distances are, they are small as compared to the distances that separate us from the stars. It takes light which, instead of travelling 30 miles an hour, travels 186,000 miles a second, about 8 minutes to get to us from the sun, and a little over 4 years to reach us from the nearest star. The light from some of the other stars do not reach us for several hundred years. The Eclipse of the Sun. Now to return to an infinitesimal part of the universe—our solar system. We have seen that the earth travels around the sun, and the moon around the earth. At some time in the course of these revolutions the moon must come directly between the earth and the sun. Then we get the eclipse of the sun. As the moon is smaller than the earth, only a portion of the earth’s surface will be cut off from the sun’s rays. That portion which is so cut off suffers a total eclipse. This explains why the eclipse of May, 1919, which was a total one for Brazil, was but a partial one for us. Einstein’s Assertion Re-stated. Einstein claimed that a ray of light from one of the stars, if passing near enough to the surface of the sun, would be appreciably deflected from its course; and he calculated the exact amount of this deflection. To begin with, why should Einstein suppose that Newton’s law of gravitation made it clear that bodies which have mass attract one another. If light has mass—and very recent work tends to show that it has—there is no reason why light should not be attracted by the sun, or any other planetary body. The question that agitated scientists was not so much whether a ray of light would be deviated from its path, but to what extent this deviation would take place. Would Einstein’s figures be confirmed? Of the bodies within our solar system the sun is by far the largest, and therefore it would exert a far greater pull than any of the planets on light rays coming from the stars. Under ordinary conditions, however, the sun itself shines with such brilliancy, that objects around it, including rays of light passing near its surface, are wholly dimmed. Hence the necessity of putting our theory to the test only when the moon covers up the sun—when there is a total eclipse of the sun. A Graphical Representation. Imagine a star A, so selected that as its light comes to us the ray just grazes the sun. If the path of the ray is straight—if the sun has no influence on it—then the path can be represented by the line AB. If, What the Eclipse Expedition Set Out to Do. Photographs of stars around the sun were to be taken during the eclipse, and these photographs compared with others of the same region taken at night, with the sun absent. Any apparent shifting of the stars could be determined by measuring the distances between the stars as shown on the photographic plates. Three Possibilities Anticipated. According to Newton’s assumption, light consists of corpuscles, or minute particles, emitted from the source of light. If this be true these particles, having mass, should be affected by the gravitational pull of the sun. If we apply Newton’s theory of gravitation and make use of his formula, it can be shown that such a gravitational pull would displace The Expeditions. That science is highly international, despite many recent examples to the contrary, is evidenced by this British Eclipse Expedition. Here was a theory propounded by one who had accepted a chair of physics in the university of Berlin, and across the English Channel were Germany’s mortal enemies making elaborate preparations to test the validity of the Berlin professor’s theory. The British Astronomical Society began to plan the eclipse expedition even before the outbreak of the Great War. During the years that followed, despite the destinies of nations which hung on threads from day to day, despite the darkest hours in the history of the British people, our English astronomers continued to give attention to the details of the proposed expedition. When the day of the eclipse came all was in readiness. One expedition under Dr. Crommelin was sent to Sobral, Brazil; another, under Prof. Eddington, to Principe, an island off the west coast of Africa. In both these places a total eclipse was anticipated. The eclipse occurred on May 29, 1919. It lasted for six to eight minutes. Some 15 photographs, with an average exposure of five to six seconds, were taken. Two months later another series of photographs of the same region were taken, but this time the sun was no longer in the midst of these stars. The photographs were brought to the famous Greenwich Observatory, near London, and the astronomers and mathematicians began their laborious measurements and calculations. On November 6, at the meeting of the Royal Society, the result was announced. The Sobral Where Did Einstein Get His Idea of Gravitation? In 1905 Einstein published the first of a series of papers supporting and extending a theory of time and space to which the name “the theory of relativity” had been given. These views as expounded by Einstein came into direct conflict with Newton’s ideas of time and space, and also with Newton’s law of gravitation. Since Einstein had more faith in his theory of relativity than in Newton’s theory of gravitation, Einstein so changed the latter as to make it harmonize with the former. More will be said on this subject. Let not the reader misunderstand. Newton was not wholly in the wrong; he was only approximately right. With the knowledge existing in Newton’s day Newton could have done no more than he did; no mortal could have done more. But since Newton’s day physics—and science in general—has advanced in great strides, and Einstein can interpret present-day knowledge in the same masterful fashion that Newton could in his day. With more facts to build upon, Einstein’s law of gravitation is more universal than Newton’s; it really includes Newton’s. But now we must turn our attention very briefly to the theory of relativity—the theory that led up to Einstein’s law of gravitation. The Theory of Relativity. The story goes that Einstein was led to his ideas by watching a man fall from a roof. This story bears a striking similarity to Newton and the apple. Perhaps one is as true as the other. However that may be, the principle of relativity is as old as philosophical thought, for it denies the possibility of measuring absolute time, or absolute space. All things are relative. We say that it takes a “long time” to get from New York to Albany; long as compared to what? Let us take another illustration. Every time the earth turns on its axis we mark down as a day. With this as a basis, we say that it takes a little over 365 days for the earth to complete its revolution around the sun, and our 365 days we call a year. But now consider some of our other planets. With our time as a basis, it takes Jupiter or Saturn 10 hours to turn on its axis, as compared to the 24 hours it takes the earth to turn. Saturn’s day is less than one-half our day, and our day is more than twice Saturn’s—that is, according to the calculations of the inhabitants of the earth. Mercury completes her circuit around the sun in 88 days; Neptune, in 164 years. Mercury’s year is but one-fourth ours, Neptune’s, 164 times ours. And observers at Mercury and Neptune would regard us from You may say, why not take our standard of time as the standard, and measure everything by it? But why should you? Such a selection would be quite arbitrary. It would not be based on anything absolute, but would merely depend on our velocity around the sun. These ideas are old enough in metaphysics. Einstein’s improvement of them consists not merely in speculating about them, but in giving them mathematical form. The Origin of the Theory of Relativity. A train moves with reference to the earth. The earth moves with reference to the sun. We say the sun is stationary and the earth moves around the sun. But how do we know that the sun itself does not move with reference to some other body? How do we know that our planetary system, and the stars, and the cosmos as a whole is not in motion? There is no way of answering such a question unless we could get a point of reference which is fixed—fixed absolutely in space. We have already alluded to our view of the nature of light, known as the wave theory of light. This theory postulates the existence of But what is this ether? It cannot be seen. It defies weight. It permeates all space. It permeates all matter. So say the exponents of this ether. To the layman this sounds very much like another name for the Deity. To Sir Oliver Lodge it represents the spirits of the departed. To us, of importance is the conception that this ether is absolutely stationary. Such a conception is logical if the various developments in optics and electricity are considered. But if absolutely stationary, then the ether is the long-sought-for point of reference, the guide to determine the motion of all bodies in the universe. The Famous Experiment Performed by Prof. Michelson. If there is an ether, and a stationary ether, and if the earth moves with reference to this ether, the earth, in moving, must set up ether “currents”—just as when a train moves it sets up air currents. So reasoned Michelson, a young Annapolis graduate at the time. And forthwith he devised a crucial experiment the Which is the quicker, to swim up stream a certain length, say a hundred yards, and back again, or across stream the same length and back again? The swimmer will answer that the up-and-down journey is longer. Our river is the ether. The earth, if moving in this ether, will set up an ether stream, the up stream being parallel to the earth’s motion. Now suppose we send a beam of light a certain distance up this ether stream and back, and note the time; and then turn the beam of light at right angles and send it an equal distance across the stream and back, and note the time. How will the time taken for light to travel in these two directions compare? Reasoning by analogy, the up-and-down stream should take longer. Michelson’s results did not accord with analogy. No difference in time could be detected between the beam of light travelling up-and-down, and across-and-back. But this was contrary to all reason if the postulate of an ether was sound. Must we then revise our ideas of an ether? Perhaps after all there is no ether. But if no ether, how are we to explain the propagation of light in space, and various electrical phenomena connected with it, such as the Hertzian, or wireless waves? There was another alternative, one suggested by Larmor in England and Lorentz in Holland,—that matter is contracted in the direction of its motion through the ether current. To say that bodies are actually shortened in the direction of their motion—by an amount which increases as the velocity of these bodies approaches that of light—is so revolutionary an idea that Larmor and Lorentz would hardly have adopted such a viewpoint but for the fact that recent investigations into the nature of matter gave basis for such belief. Matter, it has been shown, is electrical in nature. The forces which hold the particles together are electrical. Lorentz showed that mathematical formulas for electrical forces could be developed which would inevitably lead to the view that material bodies contract in the direction of their motion. “But this is ridiculous,” you say; “if I am shorter in one direction than in another I would notice it.” You would if some things were shortened and others were not. But if all things Lorentz’s Plausible Explanation Really Deepens the Mystery. The startling ideas just outlined have opened up several new vistas, but they have left unanswered the two problems we set out to solve: whether there is an ether, and if so, what is the velocity of the earth in reference to this ether? Lorentz maintains that there is an ether, but the velocities of bodies relative to it must forever remain a mystery. As you change your position your distances change; you change; everything about you changes accordingly; and all basis for comparison is lost. Nature has entered into a conspiracy to keep you ignorant. Einstein Comes upon the Scene. Einstein starts with the assumption that there is no possible way of identifying this ether. Suppose we ignore the ether altogether, what then? If we do ignore the ether we no longer have The Principle of Relativity. If we are to believe in the “causal relationship between only such things as lie within the realm of observation,” then observation teaches us that bodies move only relative to one another, and that the idea of absolute motion of a body in space is meaningless. Einstein, therefore, postulates that there is no such thing as absolute motion, and that all we can discuss is the relative motion of one body with respect to another. This is just as logical a deduction from Michelson’s experiment as the attempt to explain Michelson’s anomalous results in the light of an all-pervading ether. Consider for a moment Newton’s scheme. This great pioneer pictured an absolute standard of position in space relative to which all velocities are measured. Velocities were measured by noting the distance covered and dividing the result by the time taken to cover the distance. Space was a definite entity; and so was time. “Time,” Just as Newton conceived of absolute space, so he conceived of absolute time. From the latter standard of reference the idea of a “simultaneity of events” at different places arose. But now if there is no standard of reference, if the ether does not exist or does not function, if two points A and B cannot be referred to a third, and fixed point C, how can we talk of “simultaneity of events” at A and B? In fact, Einstein shows that if all you can speak about is relative motion, then one event which takes say one minute on one planet would not take one minute on another. For consider two bodies in space, say the planets Venus and the earth, with an observer B on Venus and another A on the earth. B notes the time taken for a ray of light to travel from B to the distance M. Prof. Cohen’s Illustration. Further bewildering possibilities are clearly outlined in this apt illustration: “If when you are going away on a long and continuous journey you write home at regular intervals, you should not be surprised that with the best possible mail service your letters will reach home at progressively longer intervals, since each letter will have a greater distance to “Precisely the same is true if you substitute light rays for sound waves. If with the naked eye or with a telescope you watch a clock moving away from you, you will find that its minute hand takes a longer time to cover its five-minute intervals than does the chronometer in your hand, and if the clock travelled with the velocity of light you would forever see the minute hand at precisely the same point. That which is true of the clock is, of course, also true of all time intervals which it measures, so that if you moved away from the earth with the velocity of light everything on it would appear as still as on a painted canvas.” Your time has apparently come to a standstill in one position and is moving in another! All this seems absurd enough, but it does show that time alone has little meaning. Minkowski’s Conclusion. The relativity theory How We Measure a Point in Space. Suppose I say to you that the chemical laboratory of Columbia University faces Broadway; would that locate the laboratory? Hardly, for any building along Broadway would face Broadway. But suppose I add that it is situated at Broadway and 117th Street, south-east? there could be little doubt then. But if, further, this laboratory would occupy but part of the building, say the third floor; then the situation would be specified by naming Broadway, 117th Street S. E., third floor. If Broadway represents length, 117th Street width, and third floor height, we can see what is meant when we say that three dimensions are required to locate a position in space. The Fourth Dimension. A point on a line may be located by one dimension; a point on a wall requires two dimensions; a point in the room, like the chemical laboratory above ground, needs three. The layman cannot grasp the meaning of a fourth dimension; yet the mathematician does imagine it, and plays with it in mathematical terms. Minkowski and Einstein picture time as the fourth dimension. To them time occupies no more important position than length, breadth, or thickness, and is as intimately related to these three as the three are to one another. H.G. Wells, the novelist, has beautifully caught this spirit when in his novel, “The Time Machine,” he makes his hero travel backwards and forwards along time just as a man might go north or south. When the man with his time machine goes forward he is in the future; when he goes backwards he is in the past. In reality, if we stop to think a minute, there is no valid reason for the non-existence of a fourth dimension. If one, two and three dimensions, why not four—and five and six, for that matter? Theoretically at least there is no reason why the limit should be set at three. However, our minds become sluggish when we attempt to picture dimensions beyond three; just as an extraordinary Our difficulty in imagining four dimensions may be likened to the difficulty two-dimensioned beings would experience in imagining us, beings of the conventional three dimensions. Suppose these two-dimensional beings were living on the surface of the earth; what could they see? They could see nothing below and nothing above the surface. They would see shifting surfaces as we walked about, but being sensitive to length and breadth only, and not to height, they could gain no notion whatsoever of what we really look like. It is thus with us when we attempt to picture four-dimensional space. Perhaps the analogy of the motion picture may help us somewhat. As everybody knows, these motion pictures consist of a series of photographs which are shown in rapid succession on the screen. Each photograph by itself conveys a sensation of space, that is, of three dimensions; but one photograph rapidly following another conveys the sensation of space and time—four dimensions. Space and time are interlinked. The Time-space Idea Further Developed. We have already alluded to the fact that objects in space moving with different velocities build up But is there no relationship existing between the space and time of one body in the universe as compared to the space and time of another? Can we not find something which holds good for all bodies in the universe? We can. We can express it mathematically. It is the concept of time and space interlinked; of time as the fourth dimension, length, breadth and thickness being the other three; of time as one of four co-ordinates and at right angles to the other three (a situation which requires a terrific stretch of the imagination to visualize). The four dimensions are sufficient to co-ordinate the time-space relationships “Strain” and “Distortion” in Space. The four-dimensional unit has been given the name “world-line,” for the “world-line” of any particle in space is in reality a complete history of that particle as it moves about in space. Particles, we know, attract one another. If each particle is represented by a world-line these world-lines will be deflected from their course owing to such attraction. Imagine a bladder representing the universe, with lines on it representing world-lines. Now squeeze the bladder. The world-lines are bent in various directions; they are “distorted.” This illustrates the influence of gravity on these world-lines; it is the “strain” brought about due to the force of attraction. The distorted bladder illustrates even more, for it is a true representation of the real world. How Einstein’s Conception of Time and Space Led to a New View of Gravitation. In our conventional language we speak of the sun as exerting At this point Newton’s conceptions fail, for his views and his laws do not include “strains” in space. Newton’s law of gravitation must be supplanted by one which does include such distortions. It is Einstein’s great glory to have supplied us with this new law. Einstein’s Law of Gravitation. This appears to be the only law which meets all requirements. It includes Newton’s law, and cannot be distinguished from it if our experiments are confined to the earth and deal with relatively small velocities. But when we betake ourselves to Einstein’s Theory Scores Its First Great Victory. In the beginning of this chapter we referred to the elaborate eclipse expedition sent by the British to test the validity of Einstein’s new theory of gravitation. The British scientists would hardly have expended so much time and energy on this theory of Einstein’s but for the fact that Einstein had already scored one great victory. What was it? Imagine but a single planet revolving about the sun. According to Newton’s law of gravitation, the planet’s path would be that of an ellipse—that is, oval—and the planet would travel indefinitely along this path. According to Einstein the path would also be elliptical, but before a revolution would be quite completed, the planet would start along a slightly advanced line, forming a new ellipse slightly in advance of the first. The elliptic orbit slowly turns in the direction in which the planet is moving. After many years—centuries—the orbit will be in a different direction. The rapidity of the orbit’s change of direction depends on the velocity of the planet. Mercury Observation tells us that the orbit of Mercury is advancing at the rate of 574 seconds (of arc) per century. We can calculate how much of this is due to the gravitational influence of other planets. It amounts to 532 seconds per century. What of the remaining 42 seconds? You might be inclined to attribute this shortcoming to experimental error. But when all such possibilities are allowed for our mathematicians assure us that the discrepancy is 30 times greater than any possible experimental error. This discrepancy between theory and observation remained one of the great puzzles in astronomy until Einstein cleared up the mystery. According to Einstein’s theory the mathematics of the situation is simply this: in one revolution of the planet the orbit will advance by a fraction of a revolution equal to three times the square of the ratio of the velocity of the planet to the velocity Still Another Victory? Einstein’s third prediction—the shifting of spectral lines toward the red end of the spectrum in the case of light coming to us from the stars of appreciable mass—seems to have been confirmed recently (March, 1920). “The young physicists in Bonn,” writes Prof. Einstein to a friend, “have now as good as certainty (so gut wie sicher) proved the red displacement of the spectral lines and have cleared up the grounds of a previous disappointment.” Summary. Velocity, or movement in space, is at the basis of Einstein’s work, as it was at the basis of Newton’s. But time and space no longer have the distinct meanings that they had when examined with the help of Newton’s equations. Time and space are not independent but interdependent. They are meaningless when treated as separate entities, giving results which may hold for one body in the universe but do not hold for any other body. To get general laws which are applicable to the cosmos as a whole the Fundamentals of Mechanics must be united. Einstein’s great achievement consists in applying this revised conception of space and time to elucidate cosmical problems. “World-lines,” representing the progress of particles in space, consisting of space-time combinations (the four dimensions), are “strained” or “distorted” in space due to the attraction that bodies exhibit for one another (the force of gravitation). On the other hand, gravitation itself—more universal than anything else in the universe—may be interpreted in terms of strains on world-lines, or, what amounts to the same thing, strains of space-time combinations. This brings gravitation within the field of Einstein’s conception of time and space. That Einstein’s conception of the universe is an improvement upon that of Newton’s is evidenced by the fact that Einstein’s law explains all that Newton’s law does, and also other facts which Newton’s law is incapable of explaining. Among these may be mentioned the distortion of the oval orbits of planets round the sun (confirmed in the case of the planet Mercury), and the deviation of light rays in a gravitational field (confirmed by the English Solar Eclipse Expedition). Einstein’s Theories and the Inferences to be Drawn from Them. Einstein’s theories, supported Some Facts about Einstein Himself. Albert Einstein was born in Germany some 45 years ago. At first he was engaged at the Patent Bureau in Berne, and later became professor at the ZÜrich Polytechnic. After a short stay at Prague University he accepted one of those tempting “Akademiker” professorships at the university of Berlin—professorships which insure a comfortable income to the recipient of one of them, little university work beyond, perhaps, one lecture a week, and splendid facilities for research. A similar inducement enticed the chemical philosopher, Van ’t Hoff, to leave his Amsterdam, and the Swedes came perilously near losing their most illustrious scientist, Arrhenius. Einstein published his first paper on relativity in 1905, when not more than 30 years old. Of this paper Planck, the Nobel Laureate in physics this year, has offered this opinion: “It surpasses in boldness everything previously suggested in speculative natural philosophy and even in the philosophical theories of knowledge. The revolution introduced into the physical conceptions of the world is only to be compared in extent and depth with that brought about by the introduction Einstein published a full exposition of the relativity theory in 1916. During the momentous years of 1914–19, Einstein quietly pursued his labors. There seems to be some foundation for the belief that the ways of the German High Command found little favor in his eyes. At any rate, he was not one of the forty professors who signed the famous manifesto extolling Germany’s aims. “We know for a fact,” writes Dr. O.A. Rankine, of the Imperial College of Science and Technology, London, “that Einstein never was employed on war work. Whatever may have been Germany’s mistakes in other directions, she left her men of science severely alone. In fact, they were encouraged to continue in their normal occupations. Einstein undoubtedly received a large measure of support from the Imperial Government, even when the German armies were being driven back across Belgium.” Quite recently (June, 1920) the Barnard Medal of Columbia University was conferred on him “in recognition of his highly original and fruitful development of the fundamental concepts of physics through application of mathematics.” In acknowledging the honor, Prof. Einstein wrote to ReferencesFor those lacking all astronomical knowledge, an excellent plan would be to read the first 40 pages of W.H. Snyder’s Everyday Science (Allyn and Bacon), in which may be found a clear and simple account of the solar system. This could be followed with Bertrand Russell’s chapter on The Nature of Matter in his little volume, The Problems of Philosophy (Henry Holt and Co.). Here the reader will be introduced to the purely philosophical side of the question—quite a necessary equipment for the understanding of Einstein’s theory. Of the non-mathematical articles which have appeared, those by Prof. A.S. Eddington (Nature, volume 101, pages 15 and 34, 1918) and Prof. M.R. Cohen (The New Republic, Jan. 21, 1920) are the best which have come to the author’s notice. Other articles on Einstein’s theory, some easily comprehensible, others somewhat confusing, A number of books deal with the subject, and all of them are more or less mathematical. However, in every one of these volumes certain chapters, To those familiar with the German language Einstein’s book, Über die spezielle und die allgemeine RelativitÄtstheorie (Friedr. Vieweg und Sohn, Braunschweig, 1920), may be recommended. The mathematical student may be referred to a Einstein’s papers have appeared in the Annalen der Physik, Leipzig, volume 17, page 132, 1905, volume 49, page 760, 1916, and volume 55, page 241, 1918. Since the above has been written two excellent books have Though published as early as 1897, Bertrand Russell’s An Essay on the Foundations of Geometry (Cambridge Univ. Press, 1897) contains a fine account of non-Euclidean geometry. |