This Chapter is divided as follows:— Positive Printing by the direct action of Light. This includes—the preparation of sensitive paper,—of fixing and toning Baths,—and the manipulatory details of the process. Selection of Paper for Photographic Printing.—The ordinary varieties of paper sold in commerce are not well adapted for the production of Positive prints. Papers are manufactured purposely which are more smooth and uniform in texture. Many samples of even the finest paper are however defective, and hence each sheet should be examined separately by holding it against the light, and if spots or irregularities of texture are seen, it should be rejected. These spots usually consist of small particles of brass or iron, which, when the paper is rendered sensitive, The foreign papers, French and German, are different from the English. They are porous and sized with starch, the English being sized with gelatinous animal matter. In all cases there is a difference in smoothness between the two sides of the paper, which may be detected by holding each sheet in such a manner that the light strikes it at an angle; the wrong side is that on which dark wavy bands, of an inch to an inch and a half in breadth, are seen, caused by the strips of felt on which the paper was dried. With most qualities of paper no difficulty whatever will be experienced in detecting the broad and regular bands above referred to; but when they cannot be seen, the wrong side of the sheet may be known by wire markings crossing each other, or if the paper be wetted at the corner, one side may appear evidently smoother than the other. There are three principal varieties of sensitive paper in common use, viz. the Albuminized, the plain, and the Ammonio-Nitrate paper. Formula I. Preparation of Albuminized Paper.—This includes the salting and albuminizing, and the sensitizing with Nitrate of Silver. The Salting and Albuminizing.—Take of
If distilled water cannot be procured, rain water or even common spring water When the ingredients are mixed, take a bundle of quills or a fork, and beat the whole into a perfect froth. As the froth forms, it is to be skimmed off and placed in a flat dish to subside. The success of the operation depends entirely upon the manner in which this part of the process is conducted;—if the Albumen be not thoroughly beaten, flakes of animal membrane will be left in the liquid, and will cause streaks upon the paper. When the froth has partially subsided, transfer it to a tall and narrow jar, and allow to stand for several hours, that the membranous shreds may settle to the bottom. Then pour off the upper clear portion, which is fit for use. Albuminous liquids are too glutinous to run well through a paper filter, and are better cleared by subsidence. A more simple plan than the above, and one equally efficacious, is to fill a bottle to about three parts with the salted mixture of Albumen and water, and to shake it well for ten minutes or a quarter of an hour until it loses its glutinosity and can be poured out smoothly from the neck of the bottle. It is then to be transferred to an open jar, and allowed to settle as before. The solution prepared by the above directions will contain exactly ten grains of salt to the ounce, dissolved in an equal bulk of Albumen and water. Some operators employ the Albumen alone without an addition of water; but this commonly gives a highly varnished appearance, which is thought by most to be objectionable. Much however will depend upon the kind of paper which is employed, certain varieties taking more gloss than others; Papier Rive, for instance, often requires the Albumen to be nearly or quite undiluted. The principal difficulty in Albuminizing paper, is to avoid the occurrence of streaky lines, which, when the paper is rendered sensitive, bronze strongly under the influence of the light. To avoid them, use the eggs quite fresh, In salting and albuminizing Photographic paper by the formula above given, it is found that each quarter-sheet, measuring eleven inches by nine inches, removes one fluid drachm and a half from the bath, equivalent to about one grain and three-quarters of salt (including droppings). In salting plain paper, each quarter-sheet takes up only one drachm; so that the glutinous nature of the Albumen causes a third part more of salt to be retained by the paper. English papers are not good for albuminizing; they do not take the Albumen properly, and curl up when laid upon the liquid: the process of toning the prints is also slow and tedious. The thin negative paper of Canson, the Papier Rive, and Papier Saxe, have succeeded with the writer better than Canson's Positive paper, which is often recommended; they have a finer texture, and give more smoothness of grain. To apply the Albumen, pour a portion of the solution into a flat dish to the depth of half an inch. Then, having previously cut the paper to the proper size, take a sheet by the two corners, bend it into a curved form, convexity downwards, and lay it upon the Albumen, the centre part first touching the liquid, and the corners being lowered gradually. In this way all bubbles of air wall be pushed forwards and excluded. One side only of the paper is wetted: the other remains dry. Allow the sheet to rest upon the solution for one minute and a half, and then raise it off, and pin it up by two corners. If any circular The paper must not be allowed to remain upon the salting Bath much longer than the time specified, because the solution of Albumen being alkaline (as is shown by the strong smell of Ammonia evolved on the addition of the Chloride of Ammonium) tends to remove the size from the paper and to sink in too deeply; thus losing its surface gloss. Albuminized paper will keep a long time in a dry place. Some have recommended to press it with a heated iron, in order to coagulate the layer of Albumen upon the surface; but this precaution is unnecessary, since the coagulation is perfectly effected by the Nitrate of Silver used in the sensitizing; and it is doubtful whether a layer of dry Albumen would admit of coagulation by the simple application of a heated iron. To render the paper sensitive.—This operation must be conducted by the light of a candle, or by yellow light. Take of
Prepare a sufficient quantity of this solution, and lay the sheet upon it in the same manner as before. Three minutes' contact will be sufficient with the thin Negative paper, but if the Canson Positive paper be used, four or five minutes must be allowed for the decomposition. The papers are raised from the solution by a pair of bone forceps or common tweezers tipped with sealing-wax; or a pin may be used to lift up the corner, which is then taken by the finger and thumb and allowed to drain a little before again putting in the pin, otherwise a white mark will be produced upon the paper, from decomposition of the Nitrate of Silver. When the sheet is hung up, a small strip of A Bath prepared by the above formula is stronger than is really necessary. Forty grains of Nitrate to the ounce of water is abundantly sufficient if the sample be pure; but it must be borne in mind that the strength of the Bath diminishes rapidly by use, and hence, when the prints begin to be wanting in vigour, with pale shadows and perhaps a spotted appearance, an addition of Nitrate of Silver must be made. Fused Nitrate of Silver is recommended in preference to the crystallized Nitrate, on account of the latter being occasionally contaminated with an impurity alluded to at page 101. This when present will be likely to redden the pictures and to interfere with the rapidity of bronzing. The solution of Nitrate of Silver becomes after a time discoloured by the Albumen, but may be used for sensitizing until it is nearly black. The colour can be removed by Animal Charcoal, Sensitive albuminized paper will usually keep for several days, if protected from the light, but afterwards turns yellow from partial decomposition. Formula II. Preparation of plain paper.—Take of
Pour boiling water upon the Moss and Gelatine and stir until the latter is dissolved, then cover the vessel and set aside until cold; add the salt, and strain. Use Papier Saxe or Towgood's paper, Render sensitive by floating for two or three minutes upon a solution of Nitrate of Silver, 40 grains to the ounce. Thirty grains to the ounce, or less, will be sufficient if the sample be pure; but in that case occasional additions of fresh Nitrate of Silver must be made, as the Bath loses strength. A second Formula for plain paper.—Take of
If Towgood's or any English paper be used, the Citric Acid, Carbonate of Soda, and Gelatine may be omitted. With a foreign paper the Citrate tends to give a purple tone to the Positive, when toned by Sel d'or, but the gold toning Bath must be in active order, or the prints will be too red. The Citric Acid also should not be in excess over the alkaline Carbonate. Render sensitive by floating for three minutes upon a Nitrate Bath of sixty grains to the ounce of water. Formula III. Ammonio-Nitrate Paper.—This is always prepared without Albumen, which is dissolved by Ammonio-Nitrate of Silver. Take of
Dissolve the Gelatine by the aid of heat; add the other ingredients, and filter. The solution cannot be kept longer than two or three weeks without becoming mouldy. The Saxony paper, or Towgood's English paper, may be employed; the Gelatine and Citrate being retained or omitted, according to the taste of the operator and the mode of toning which is adopted. Render sensitive by a solution of Ammonio-Nitrate of Silver, 60 grains to the ounce of water, which is prepared as follows:— Dissolve the Nitrate of Silver in one-half of the total quantity of water. Then take a pure solution of Ammonia and drop it in carefully, stirring meanwhile with a glass rod. A brown precipitate of Oxide of Silver first forms, but on the addition of more Ammonia it is re-dissolved. Ammonio-Nitrate of Silver should be kept in a dark place, being more prone to reduction than the Nitrate of Silver. Sensitizing paper with Ammonio-Nitrate.—It is not usual to float the paper when, the Ammonio-Nitrate of Silver is used. If a bath of this liquid were employed, it would not only become quickly discoloured by the action of organic matter dissolved out of the papers, but would soon contain abundance of free Ammonia (see the Vocabulary, Part III., art. "Ammonio-Nitrate"); and an excess of Ammonia in the liquid produces an injurious effect by dissolving away the sensitive Chloride of Silver. The Ammonio-Nitrate is therefore applied with a glass rod, or by brushing, and in neither case is any of the liquid which has once touched the paper allowed to return into the bottle. Brushes are manufactured purposely for applying Silver solutions, but the hair is soon destroyed unless the brush be kept scrupulously clean. Lay the salted sheet upon blotting-paper, and wet it thoroughly by drawing the brush first lengthways and then across. Allow it to remain flat for a minute or so, in order that a sufficient quantity of the solution may be absorbed (you will see when it is evenly wet by looking along the surface), and then pin up by the corner in the usual way. If, on drying, white lines appear at the points last touched by the brush, it is probable that the Ammonio-Nitrate contains free Ammonia. The employment of a glass rod is a very simple and economical mode of applying Silver solutions. Procure a flat piece of board somewhat smaller than the sheet to be operated on, and having turned over the edges of the paper, secure them with a pin. Next bring the board near to the corner of the table, and laying the glass rod along the edge of the paper, allow the fluid to drop into the groove so Ammonio-Nitrate paper, however prepared, cannot be kept many hours without becoming brown and discoloured. Use of a solution of Oxide of Silver in Nitrate of Ammonia.—The great objection to the use of Ammonio-Nitrate of Silver is the decomposition which it sometimes experiences by keeping, metallic Silver separating and Ammonia being set free. To obviate this liberation of Ammonia, the Author employs Nitrate of Ammonia as the solvent for the Oxide of Silver. The solution is prepared as follows:—Dissolve 60 grains of Nitrate of Silver in half an ounce of water, and drop in Ammonia until the precipitated Oxide of Silver is exactly re-dissolved. Then divide this solution of Ammonio-Nitrate of Silver into two equal parts, to one of which add Nitric Acid cautiously, until a piece of immersed litmus-paper is reddened by an excess of the acid; then mix the two together, fill up to one ounce with water, and filter from the milky deposit of Chloride or Carbonate of Silver, if any be formed. This solution of Oxide of Silver in Nitrate of Ammonia appears to possess all the advantages of the Ammonio-Nitrate without the inconvenience of liberating so much free Ammonia upon the surface of the sensitive sheets. Hints in selecting from the above FormulÆ.—Albuminized paper is the most simple and generally useful; it is well fitted for small portraits and stereoscopic Photographs. The Ammonio-Nitrate Process requires more experience, but gives excellent results when black tones are required: it may be used for larger portraits, engravings, etc. Plain paper rendered sensitive by floating upon a Bath of Nitrate of Silver is easier of manipulation than the Ammonio-Nitrate, and will be found to be better adapted for toning by the Sel d'or Bath (p. 267) than the Albuminized Paper. Take of
Dissolve the Hyposulphite of Soda in four ounces of the water, the Chloride of Gold in three ounces, the Nitrate of Silver in the remaining ounce; then pour the diluted Chloride by degrees into the Hyposulphite, stirring with a glass rod; and afterwards the Nitrate of Silver in the same way. This order of mixing the solutions is to be strictly observed: if it were reversed, the Hyposulphite of Soda being added to the Chloride of Gold, the result would be the reduction of Metallic Gold; Hyposulphite of Gold, which is formed, being an unstable substance, and not capable of existing in contact with unaltered Chloride of Gold. If however it be dissolved by Hyposulphite of Soda immediately on its formation, it is rendered more permanent, by conversion into a double salt of Soda and Gold. In place of Nitrate of Silver, recommended in the formula, Chloride of Silver may be used, but not Iodide of Silver, as the formation of Iodide of Sodium would be objectionable (p. 136). For the same reason it is better not to add any part of the Hyposulphite Bath used for fixing Negatives, to the Positive colouring solution. This toning Bath is not to be employed immediately after mixing, but should be set aside until a portion of Sulphur (produced by free Hydrochloric Acid, and Tetrathionate of Soda reacting upon the Hyposulphite) has subsided. It will be very active at the expiration of a few days or a week; but upon keeping for a longer time, loses much of its efficacy by a process of spontaneous change. The immersion of prints also lessens the quantity of Gold; and hence, when the Bath begins to work slowly, more of the Chloride must be added, the Sulphur being allowed to deposit as before. Filtration through blotting-paper will not be required. The writer finds that after a certain time, when the Bath has been long used, and organic matters, Albumen, etc., have accumulated in it, it is better, and more economical, to throw away what remains, and to prepare a new solution. The addition of Chloride of Gold to an old Bath will not always make it work as quickly as one recently mixed. These include—the exposure to light, or printing properly so called; the fixing and toning; and the washing, drying, and mounting of the proof. The Exposure to Light.—For this purpose reversing frames are sold, which admit of being opened at the back, in order to examine the progress of the darkening by light, without producing any disturbance of position. Simple squares of glass however succeed equally well, when a little experience has been acquired. They may be held together by the wooden clips sold at the American warehouses at one shilling per dozen. The lower plate should be covered with black cloth or velvet. Supposing the frame to be employed, the shutter at the back is removed, and the Negative laid flat upon the glass, Collodion side uppermost. A sheet of sensitive paper is This operation may be conducted in the dark room; but unless the light be strong, such a precaution will not be required. The time of exposure to light varies much with the density of the Negative and the power of the actinic rays, as influenced by the season of the year and other obvious considerations. As a general rule, the best Negatives print slowly; whereas Negatives which have been under-exposed and under-developed print more quickly. In the early spring or summer, when the light is powerful, probably about ten to fifteen minutes will be required; but from three-quarters of an hour to an hour and a half may be allowed in the winter months, even in the direct rays of the sun. It is always easy to judge of the length of time which will be sufficient, by exposing a small slip of the sensitive paper, unshielded, to the sun's rays, and observing how long it takes to reach the coppery stage of reduction. Whatever that time may be, nearly the same will be occupied in the printing, if the Negative be a good one. When the darkening of the paper appears to have proceeded to a considerable extent, the frame is to be taken in and the picture examined. If squares of plate glass are used to keep the Negative and sensitive paper in contact, some difficulty may be experienced at first in returning it precisely to its former position after the examination is complete, but this will easily be overcome by practice. The finger and thumb should be fixed on the lower corners or edge, and the plate raised evenly and quickly. If the exposure to light has been sufficiently long, the print appears slightly darker than it is intended to remain. The toning Bath dissolves away the lighter shades, and reduces the intensity, for which allowance is made in the exposure to light. A little experience soon teaches what is the proper point; but much will depend upon the state If, on removal from the printing-frame, a peculiar spotted appearance is seen, produced by unequal darkening of the Chloride of Silver, either the Nitrate Bath is too weak, the sheet removed from its surface too speedily, or the paper is of inferior quality. On the other hand, if the general aspect of the print is a rich chocolate-brown in the case of Albumen, a dark slate-blue with Ammonio-Nitrate Paper, or a reddish purple with paper prepared with Chloride and Citrate of Silver, probably the subsequent parts of the process will proceed well. If, in the exposure to light, the shadows of the proof become very decidedly coppery before the lights are sufficiently printed, the Negative is in fault. Ammonio-Nitrate paper highly salted is particularly liable to this fault of excess of reduction, and especially so if the light be powerful; hence it is best, in the summer months, not to print by the direct rays of the Sun. This point is important also, because the excessive heat of the Sun's rays often cracks the glasses by unequal expansion, and glues the Negative firmly down to the sensitive paper. An exception however may be made in the case of Negatives of great intensity; which are printed most successfully upon, a weakly sensitized paper (p. 124) exposed to the full rays of the Sun; a feeble light not fully penetrating the dark parts. The fixing and toning of the proof.—No injury results from postponing this part of the process for many hours, provided the print be kept in a dark place. The mode often followed is to immerse the Positive in the Hyposulphite Bath in the state in which it comes from the printing-frame; moving it about in the liquid in order to displace air-bubbles, which, if allowed to remain, produce spots. But the Author, for reasons given in the first part of the Work (pp. 129 and 165), recommends that the Immediately on coming in contact with the Hyposulphite of Soda in the fixing and toning Bath, the chocolate brown or violet tint of the Positive disappears, and leaves the image of a red tone. Albumen proofs become brick-red; Ammonio-Nitrate a sepia or brown-black. If the colour is unusually pale at this stage, probably the Silver Bath is too weak, or the quantity of Chloride of Ammonium or Sodium insufficient. After the print has been thoroughly reddened, the toning action begins, and must be continued until the desired effect is obtained. This may happen in from ten minutes to a quarter of an hour, if the solution is in good working order and the thermometer at 60°; but much depends upon the temperature, and the activity of the Bath. English papers, and especially the same prepared with Albumen, tone more slowly than foreign papers plain salted. The brown and purple tints are an earlier stage of coloration than the black tones, and therefore the latter require more time. It must be borne in mind however that prolonged immersion in the Bath is favourable to sulphuration and yellowness; tending also to render the image unstable and liable to fade in the half-tones. This fading may not be seen decidedly whilst the print is in the Bath, but will show itself in the after-processes of washing and drying. The ultimate colour of the Print will vary much with the density of the Negative and the character of the Some advise that on removal from the toning Bath the Print should be soaked in new Hyposulphite for ten minutes, to complete the fixation; but this precaution is not required with a Bath of the strength given in the formula. An analysis of an old Bath which had been extensively used, indicated only ten grains of Hyposulphite of Silver to the ounce, so that it was far from saturated. The occasional addition of fresh crystals of Hyposulphite of Soda to keep up the strength of the Bath, is useful, the exact quantity added not being material. The washing, drying, and mounting of the Positive Proofs.—It is essential to wash out every trace of Hyposulphite of Soda from the Print if it is to be preserved from fading, and to do this properly requires considerable care. Always wash with running water when it can be obtained, and choose a large shallow vessel exposing a considerable surface in preference to one of lesser diameter. A constant dribbling of water must be maintained for four or five hours, and the prints should not lie together too closely, or the water does not find its way between them, (see the remarks at p. 162). When running water cannot be obtained, proceed as follows:—first wash the Prints gently, to remove the greater part of the Hyposulphite solution. Then transfer them to a large shallow pan, in which may be placed as many Prints as it will conveniently hold. Leave them in for about a quarter of an hour, with occasional movement, and then pour off the water quite dry. This point is important, viz. to drain off the last portion of liquid completely before adding fresh water. Repeat the process of changing at least five or six times, or more, according to the bulk of water, number of Prints, and degree of attention paid to them. Lastly, proceed to remove the size from the Print by The size may also be effectually removed from the Print by the common Carbonate of Soda used in washing, although the former process is recommended as the most secure. Dissolve about a handful of the Soda in a pint of water, and when the milky deposit, if any occurs, has subsided, immerse the washed Positives for twenty minutes or half an hour. The Soda renders the paper quite porous, but produces no alteration of tint. If the process be properly performed, ink will run in attempting to write upon the back of the finished picture. After removal from the Soda Bath a second washing will be required, but the time of the first washing may be proportionally shortened. Here a difficulty will occur with many kinds of water; the Carbonate of Soda precipitating Carbonate of Lime, in the form of a white powder which obscures the picture. To obviate this, use rain water until the greater part of the alkaline salt has been removed, and do not allow a stationary layer of liquid to rest too long upon the Print. The New River water supplied to many parts of London, being comparatively soft, answers perfectly, and produces no white deposit, if the proofs are moved about occasionally. When the Prints have been thoroughly washed, blot them off between sheets of porous paper and hang up to Albumen proofs when dry are sufficiently bright without further treatment; but in the case of plain paper, salted simply, the effect is improved by laying the Print face downwards upon a square of plate-glass and rubbing the back with an agate burnisher, sold at the artists' colour-men's. This hardens the grain of the paper and brings out the details of the picture. Hot-pressing has a similar effect and is often employed. Mount the proofs with a solution of Gelatine in hot water, freshly made; the best Scotch glue answers well. Gum water, prepared from the finest commercial gum, and free from acidity, may also be used, but it should be made very thick, that it may not sink into the paper, nor produce an unpleasant "cockling up" of the cardboard, which is caused by the damp and expanded print contracting as it dries. Caoutchouc dissolved in mineral Naphtha to the consistence of thick glue or gold-beaters' size, is employed by many for mounting Photographic Prints; it may be obtained at the varnish shops, and is sold in tin boxes. The mode of using it is as follows:—with a broad brush made of stiff bristles, apply the cement to the back of the picture; then take a strip of glass with a straight edge, and by drawing it across the paper, scrape off as much as possible of the excess. The print will then be found to adhere very readily to the cardboard, without causing expansion or cockling; and any portion of the cement which oozes out during the pressing may, when dry, be removed with a penknife without leaving a stain. The formulÆ for Positive printing given in the works Take as an illustration the following process, which has long been recommended for its simplicity, and which is in every respect a good one:—Dissolve 40 grains of Chloride of Ammonium in 20 ounces of Distilled Water, and immerse about a dozen sheets of Towgood's Positive paper, removing air-bubbles with a camels'-hair brush. When the last sheet has been placed in the liquid, turn the batch over and take them out one by one, so that each sheet, remaining in the liquid at least ten minutes, may be thoroughly saturated. When dry, excite by brushing with a 40 or 60-grain solution of Ammonio-Nitrate of Silver in the usual way. Now this formula contains less than one-fifth of the amount of salt often employed, and if a thick foreign paper sized with starch, such as Canson's Positive, were floated upon such a salting Bath, it would be difficult to obtain a good picture. By immersing however a paper sized with Gelatine like the one recommended, a much larger quantity of salt is retained upon the surface, and the film is sufficiently sensitive. There are three modes of applying solutions, viz. by brushing, floating, and immersion. The quantity of solution left on the paper varies with each, and consequently each requires a different formula. Immersion in a strong salting Bath tends to give a coarse picture wanting in definition; whereas the plan of brushing a weak salting solution, produces a paper deficient in sensitiveness, and yielding a pale red image without proper depth of shadow. But independent of these differences, the chemical nature of the size employed also influences the toning of the This destruction of the tint by boiling water, and its restoration by dry heat, is due in great part to the animal substance employed in sizing the paper; and it will be found that prints upon a foreign paper, such as the Saxony Positive, salted with a ten-grain solution and sensitized with Ammonio-Nitrate, do not lose their tones in hot water and are not much darkened by ironing. The peculiarity of the sizing of the English Photographic papers must therefore be borne in mind, and allowance made for the additional sensitiveness and alteration of colour which it produces. When a formula is given, the paper which is recommended for that particular formula should alone be used. Positive Printing by Development. Negative printing processes will be found useful during the dull winter months, and at other times when the light is feeble, or when it is required to produce a large number of impressions from a Negative in a short space of time. The plan of development also enables the operator to obtain Positives of greater stability than those yielded by the direct action of light. Three processes may be described, the first of which gives Positives of an agreeable colour, but the second, on Iodide of Silver, the greatest permanency under unfavourable conditions. Positives may be obtained by exposing paper prepared with Chloride of Silver to the action of light until a faint image is perceptible, and subsequently developing by Gallic Acid; but in this process it is difficult to obtain sufficient contrast of light and shade; the impression, if sufficiently exposed and not too much developed, being feeble, with a want of intensity in the dark parts. By associating with the Chloride an organic salt of Silver, such as the Citrate, this difficulty may be overcome, and the shadows be brought out with great depth and distinctness. The papers are salted with a mixed Chloride and Citrate as in the formula for the Ammonio-Nitrate Process. The Bath of Aceto-Nitrate is prepared as follows:—
Float the papers (Papier Saxe or Papier Rive) upon the Bath for three minutes, and suspend them to dry in a room from which actinic rays are perfectly excluded. The exposure to light,—which is conducted in the ordinary printing frame, the Negative and sensitive paper being laid in contact in the usual way,—will seldom be longer than three or four minutes, even upon a dull day. It may be regulated by the colour assumed by the projecting margin of the paper; but it is quite possible to tell by the appearance of the image when it has received a sufficient amount of exposure:—the whole of the picture should be seen, The developing solution is prepared as follows:—
In very cold weather it may be necessary to employ a saturated solution of Gallic Acid, containing about four grains to the ounce; whereas in warm weather the image will develope too quickly, and Acetic Acid must be added (see the remarks at the end of the process, p. 266). To facilitate the solution of the Gallic Acid, stand the bottle in a warm place near the fire. A lump of Camphor floated in the liquid, or a drop of Oil of Cloves added, will to a great extent prevent it from becoming mouldy by keeping; but if once mould has formed, the bottle must be well cleansed with Nitric Acid, or the decomposition of the fresh Gallic Acid will be hastened. Pour the solution of Gallic Acid into a flat dish, and immerse the Prints two or three at a time, moving them about, and using a glass rod to remove air-bubbles. The development is rapid, and will be completed in three or four minutes. If the Print developes slowly, becomes very dark in colour by continuing the action of the Gallic Acid, but shows no half-tones, it has not been exposed sufficiently long to the light. An over-exposed proof, on the other hand, developes with unusual rapidity, and it is necessary to remove it speedily from the Bath in order to preserve the clearness of the white parts; when taken out to the light, it appears pale and red, with no depth of shadow. The extent to which the development should be carried depends upon the kind of Print desired. By pushing the action of the Gallic Acid, a dark picture not much altered by the fixing Bath will be produced. But a better result as regards colour and gradation of tone will be obtained When it is intended to follow the latter plan, the action of the developer must be stopped at a point when the proof appears lighter than it is to remain; since the Sel d'or Bath adds a little to the intensity, and the image becomes somewhat more vigorous on drying. Wash the Prints in cold water in order to extract all the Gallic Acid. Then tone with Sel d'or in the manner described in the next Section, and fix in the usual way. The whites will with care be kept pure; or with only a faint yellow tinge, which is not objectionable. Upon comparing the developed Prints with others obtained by the direct action of light upon the same sensitive paper, it is evident that the advantage is slightly on the side of the latter; but the difference is so small that it would be overlooked in printing large subjects, for which the Negative Process is more especially adapted. The colour of both kinds of Positives is the same, or perhaps a shade darker in the developed proofs, which are usually of a violet-purple tone, but sometimes of a dark chocolate-brown. A developing process with Serum of Milk.—The use of "whey" as a vehicle for Chloride of Silver has something the same effect as that produced by adding a Citrate. This may be traced to the presence of the Milk Sugar and of a portion of uncoagulated Caseine left in the Serum. The only difficulty in the process is to coagulate the milk in such a way as to separate the greater part but not the whole of the Caseine. Milk which has become sour, or to which an acid has been added, is not considered so good for the purpose as that which has been treated with rennet; and even when rennet is used it must be of the best quality or its action will be imperfect. The serum Salt the prepared Serum with Chloride of Sodium or Ammonium; in quantity about eight or ten grains to each fluid ounce, and render sensitive upon the same Bath as that recommended for the Citrate Process. Iodide of Silver is more sensitive to the reception of the invisible image than the other compounds of that metal; and hence it is usefully employed in printing enlarged Positives from small Negatives, by means of the Camera. The great stability of the proofs upon Iodide of Silver will also be a recommendation of this process when unusual permanency is required. Take of
The best paper to use will be either Turner's Calotype, or Whatman's or Hollingworth's Negative; the foreign papers do not succeed with the above formula (p. 258). Float the paper on the iodizing Bath until it ceases to curl up and lies flat upon the liquid: then pin up to dry in the usual way. Render sensitive upon a Bath of Aceto-Nitrate of Silver containing 30 grains of Nitrate of Silver with 30 minims of Glacial Acetic Acid to each ounce of water. When the sheet is quite dry, place it in contact with the Develope by immersion in a saturated solution of Gallic Acid, prepared in the manner described at page 261. The image appears slowly, and the process may last from 15 minutes to half an hour. If the exposure has been correctly timed, the Gallic Acid appears at length almost to cease acting; but when the proof has been over-exposed, the development goes on uninterruptedly, and the image becomes too dark, partaking more of the character of a Negative than a Positive. The usual rule, that under-exposed proofs develope slowly but show no half-tones, and that the over-exposed develope with unusual rapidity, is also observed in the process with Iodide of Silver. After the picture is fully brought out, wash in cold, and subsequently in warm water, to remove the Gallic Acid, which, if allowed to remain, would discolour the Hyposulphite Bath. Then fix the Print in a solution of Hyposulphite of Soda, one part to two of water, continuing the action until the yellow colour of the Iodide disappears. The fixing Bath ought not to produce much change in the tint. If the Positive loses its dark colour on immersion in the Hyposulphite, and becomes pale and red, it has been insufficiently developed. The theory of this part of the process should be understood:—It is particularly the second stage of the development of a Photograph (see p. 144) on which the fixing Bath produces no effect; and therefore a considerable change of colour in the Hyposulphite indicates that too little Silver has been deposited, and the remedy will be to push the development, adding a little Aceto-Nitrate to the Gallic Acid if the strength of the Bath be found insufficient to yield dark tones. The colour of Positives developed upon Iodide of Silver is not agreeable, and they become blue and inky when toned with gold. By fixing the proof in Hyposulphite of Soda which has been long used and has acquired sulphuretting properties, the tint is much improved; but the permanency of the Print under unfavourable conditions is lessened by adopting that mode of toning. By substituting the Bromide for the Iodide of Silver in the above process, the proportions and details of manipulation being in other respects the same, a more agreeable colour is obtained. Paper prepared with Bromide of Silver is less sensitive than the Iodide, but an exposure of one minute (in the printing frame) will usually be sufficient even on a dull day. The image is nearly latent, but sometimes a very faint outline of the darkest shadows can be seen. The proportion of Bromide used is likely to influence this point; the sensitiveness being diminished, but the image showing more of the details before development, when the quantity of the Silver Salt is reduced to a minimum. Either English or French papers may be used, but in the latter case the Bromide should be dissolved in Serum of Milk (p. 262), or it will be difficult to obtain a good surface picture. The proportion of Bromide may be five grains to the ounce of Serum. These proofs, even when simply fixed in plain Hyposulphite of Soda, are superior in colour to the Positives printed by the last formula upon Iodide of Silver; and the permanency is very great if the development be sufficiently pushed. The use of the Serum of Milk gives an advantage in resisting the oxidizing influences to which Positives are liable to be exposed (p. 150). Printing by development should not be attempted until Perfect cleanliness is essential. The salting or iodizing solution and the Aceto-Nitrate Bath must be filtered clear, as the effect of small suspended particles in producing spots is more seen when the image is brought out by a developer. It will be necessary to be far more careful in excluding white light than in the ordinary process; and when Iodide of Silver is used, all the precautions required in the case of Collodion Negatives must be taken. Observe particularly that the dishes are kept clean, or the Gallo-Nitrate of Silver will be rapidly discoloured (read the remarks at page 179). Stereoscopic Negatives and small portraits are not successfully printed by development; since it is difficult to obtain the most elaborate definition, and there is a slight tendency to yellowness in the white parts. Positives may be developed upon Albumen paper, but the Gallic Acid is apt to discolour the lights. In printing by development upon Chloride of Silver, the theory of the subject must be particularly studied. When the weather is cold and the light bad, the development of the image proceeds slowly, the Gallic Acid Bath remains clear, and good half-tones are obtained; but under opposite conditions, the developer may become turbid and the shadows be lost by excessive deposit of Silver. This over-development will be remedied by printing the Negative in a more feeble light (near to the open window of a room), and by adding Acetic Acid to the developer, about 5 or 10 minims to the ounce, so as to bring out the image more slowly. The intensity of action is thus lessened, and if the picture be not under-exposed, the half-tones will be good. Observe also when preparing papers with Citrate, that if too much Carbonate of Soda be added in neutralizing the Citric Acid, Carbonate of Silver will be deposited in The colour of the proofs when taken from the Gallic Acid should be light red; the gradation of tone not being usually so perfect when the development is carried into the second or black stage. It is not recommended to prepare too large a stock of the salted papers, as they will probably be liable to mouldiness and decomposition unless kept perfectly dry. The Sel d'or Process for toning Positives. This process is somewhat more troublesome than the plan of fixing and toning in one solution, but possesses advantages which will presently be enumerated. The description may be divided into the preparation of the toning Bath, and the manipulatory details. Take of
Dissolve the Gold and Hyposulphite of Soda each in two ounces of the water; then mix quickly by pouring the former solution into the latter, and add the Hydrochloric Acid. If the Chloride of Gold be neutral, the liquid will have a red tinge, but if acid, then the solution may be colourless. The commercial Chloride of Gold, containing usually much free Hydrochloric Acid, will not require any addition of that substance. (See the Vocabulary, Part III.) In place of making an extemporaneous Hyposulphite of Gold by mixing the Chloride with Hyposulphite of Soda, the Crystallized Sel d'or may be used, adding about half a grain to the ounce of water, acidified as before; but the objection to the employment of this salt is its expense, and also the difficulty of obtaining it in a pure form; some samples containing less than five per cent, of Gold. It will be found very convenient to keep the two solutions on hand ready for mixing, viz. the Chloride of Gold dissolved in water in the proportion of a grain to the drachm, and the Hyposulphite of Soda, three grains to the drachm. When required for use, measure out a fluid drachm of each, dilute with water to two ounces, and mix. It is possible that the three-grain solution of Hyposulphite of Soda may by long keeping become decomposed, with precipitation of Sulphur. The effect of this would be to produce a turbidity and deposit of Gold on mixing the ingredients for the Bath, the Chloride of Gold being in excess over the Hyposulphite of Soda (see p. 250). The Bath of Sel d'or is always most active when recently mixed, but it will keep good for some days if contact with free Nitrate of Silver be avoided. The addition of this substance produces a red deposit in the Bath, containing Gold, and the solution then becomes useless. The paper may be prepared by either of the formulÆ given in the first Section of this Chapter, according to the tint desired. The pure black tones are obtained most easily with the Ammonio-Nitrate paper, and the purple tints, without gloss, on paper prepared with plain Chloride and Citrate of Soda. The printing is not carried quite to the usual intensity, as the half-tones are very little dissolved in this process. On being taken from the frame, the prints are washed thoroughly in common water until it ceases to become A trace of free Nitrate of Silver usually escapes the washing; this would cause a yellow deposit on the Print, and also in the toning Bath. It must therefore be removed, either by adding a little common salt to the water during the last washings, or by means of a dilute solution of Ammonia. For plain paper Prints the former plan will be found the least troublesome; but with Albumen proofs To prepare the Ammonia Bath, take of
The exact quantity is not material; if the liquid smells faintly of Ammonia, it will be sufficient. Place the washed Prints in this Bath, two or three at a time, and allow them to remain until the purple tint gives place to a red tone. The action must be watched, because if the Ammonia Bath be strong, the proof becomes unusually pale and red, and when this is the case a little brilliancy is lost in the after-tinting. As the Print is comparatively insensitive to light when the excess of Nitrate has been washed away, it is not necessary to darken the room; but a bright light proceeding from an open door or window should be avoided. After using the salt or the Ammonia, soak the Prints again for a minute or so in common water. Then place them in the toning Bath of Gold and acid; do not put in too many at once, and move them about occasionally, to prevent spots of imperfect action at the point where the sheets touch each other. The foreign papers, plain salted, colour rapidly in two or three minutes. English papers require five to ten minutes; Albuminized, ten minutes to a quarter of an hour. The tendency of the Gold Bath is to give a blue tone to the image; hence proofs which are light red after using the salt or Ammonia, become, first red-purple, and then violet-purple in the Sel d'or. Albumen Prints assume some shade of brown, or of purple if not too strongly Albuminized. Ammonio-Nitrate papers highly salted, and prepared without Citrate, become first dark purple, and then blue and inky; the Citrate is intended to obviate this inky tint. When the darkest tones are reached, the Bath produces no further effect, but eventually (more especially if the solution be not shielded from light [?]) there is a little decomposition, producing a cream-coloured deposit upon the lights. The toning being completed, the Prints are again washed for an instant in water, to remove the excess of gold solution. This washing must not be continued longer than two or three minutes, or there will be danger of yellowness of the whites; this however ought not to happen with proper precautions. Lastly, the proofs are fixed in a solution of Hyposulphite of Soda, one part to four of water; which may be used many times successively. This Bath alters the tone very little if the deposit of Gold be well fixed on the Print; but the writer has often observed in the case of Albumen paper and paper prepared with Citrate (Formula II.) that if removed too quickly from the Sel d'or, the purple tones change by immersion in the Hyposulphite to a chocolate-brown. Ammonio-Nitrate Prints are less liable to alter in this way. In order that the fixing may be properly performed, the time of immersion should not be less than ten minutes with a porous paper, plain salted; or fifteen minutes in the case of an English or albuminized paper. Ammonia may be used for fixing plain paper Prints; about one part of the Liquor AmmoniÆ, to four of water. Ten minutes' immersion will usually be sufficient, and the tone is very little affected. This process is a good one, but the pungent smell of the Ammonia is an objection, and the Bath discolours by use. Some care too is required in order to ensure a proper fixing of the prints (see the remarks at page 131). For directions to wash and mount the proofs, see page 255. It will sometimes happen in the Sel d'or process, from the toning Bath having but little solvent action on the light shades, that the Prints, after being washed and dried, appear too dark; this may be remedied by laying them for a few minutes in a very dilute solution of Chloride of Gold (five or six drops of the yellow solution of the Chloride to a few ounces of water) and washing for an additional quarter of an hour. Or an over-printed Positive may be saved by toning it with Chloride of Gold instead of Sel d'or. In that case, after proper removal of the free Nitrate of Silver, a few drops of a lemon-yellow solution of Chloride of Gold (with a fragment of Carbonate of Soda added to remove acidity, p. 132), should be poured over the Print, which is to be subsequently fixed in the usual way. Advantages of toning by Sel d'or.—This process will be found especially useful by those who print large Positives. The solutions may be mixed in a few minutes, and, being very dilute, are economical. It is not even necessary to employ a Bath for toning, but if the Sel d'or solution be prepared of about twice or three times the strength given in the formula, it will be sufficient to pour a few drachms upon the surface of the print. As the Gold solution is always used soon after mixing, a uniform and permanent On a mode of Printing enlarged and reduced Positives, Transparencies, etc., from Collodion Negatives. To explain the manner in which a Photograph may be enlarged or reduced in the process of printing, it will be necessary to refer to the remarks made at page 52, on the conjugate foci of lenses. If a Collodion Negative be placed at a certain distance in front of a Camera, and (by using a tube of black cloth) the light be admitted into the dark chamber only through the Negative, a reduced image will be formed upon the ground glass; but if the Negative be advanced nearer, the image will increase in size, until it becomes first equal to, and then larger than, the original Negative; the focus becoming more and more distant from the lens, or receding, as the Negative is brought nearer. Again, if a Negative portrait be placed in the Camera slide, and the instrument being carried into a dark room, a hole be cut in the window-shutter so as to admit light through the Negative, the luminous rays, after refraction by the lens, will form an image of the exact size of life upon a white screen placed in the position originally occupied by the sitter. These two planes, in fact, that of the object and of the image, are strictly conjugate foci, and, as regards the result, it is immaterial from which of the two, anterior or posterior, the rays of light proceed. Therefore in order to obtain a reduced or enlarged copy of a Negative, it is necessary only to form an image of the size required, and to project the image upon a sensitive surface either of Collodion or paper. A good arrangement for this purpose may be made by taking an ordinary Portrait Camera, and prolonging it in front by a deal box blackened inside and with a double body, to' admit of being lengthened out as required; or, more simply, by adding a framework of wood covered in with black cloth. A groove in front carries the Negative, or receives the slide containing the sensitive layer, as the case may be. In reducing Photographs, the Negative is placed in front of the lens, in the position ordinarily occupied by the object; but in making an enlarged copy, it must be fixed behind the lens, or, which is equivalent, the lens must be turned round, so that the rays of light transmitted by the Negative enter the back glass of the combination, and pass out at the front. This point should be attended to in order to avoid indistinctness of image from spherical aberration. A Portrait combination of lenses of 2½ or 3¼ inches diameter is the best form to use, and the actinic and luminous foci should accurately correspond, as any difference between them would be increased by enlarging. A stop of an inch or an inch and a half aperture placed between the lenses obviates to some extent the loss of sharp outline usually following enlargement of the image. The light may be admitted through the Negative by pointing the Camera towards the sky; or direct sunlight may be used, thrown upon the Negative by a plane reflector. A common swing looking-glass, if clear and free from specks, does very well; it should be so placed that the centre on which it turns is on a level with the axis of the lens. The best Negatives for printing enlarged Positives are those which are distinct and clear; and it is important to use a small Negative, which strains the lens less and gives a better result than one of larger size. In printing by a 2¼ lens for instance, prepare the Negative upon a plate about two inches square, and afterwards enlarge it four diameters. Paper containing Chloride of Silver is not sufficiently The exposure required will vary not only with the intensity of the light and the sensibility of the surface used, but also with the degree of reduction or enlargement of the image. In printing upon Collodion the resulting picture is Positive by transmitted light; it should be backed up with white varnish, and then becomes Positive by reflected light. The tone of the blacks is improved by treating the plate first with Bichloride of Mercury, and then with Ammonia, in the manner described at pages 113 and 207. Mr. Wenham, who has written a paper on the mode of obtaining Positives of the life size, operates in the following way:—he places the Camera, with the slide containing the Negative, in a dark room, and reflects the sunlight in through a hole in the shutter, so as to pass first through the Negative and then through the lens; the image is received upon iodized paper, and developed by Gallic Acid, in the mode described in the second Section of this Chapter (p. 263). On printing Collodion transparencies for the Stereoscope.—This may be done by using the Camera to form an image of the Negative in the mode described in the last page; but more simply by the following process:—Coat the glass, upon which the Print is to be formed, with Collodio-Iodide of Silver in the usual way; then lay it upon a piece of black cloth, Collodion side uppermost, and place two strips of paper of about the thickness of cardboard and one-fourth of an inch broad, along the two opposite edges, to prevent the Negative being soiled by contact with the film. Both glasses must be perfectly flat, and even then it may happen that the Negative is unavoidably wetted; if so, wash it immediately with water, and if it be properly varnished, no harm will result. A little ingenuity will suggest a simple framework of The printing is conducted by the light of gas, or of a camphine or moderator lamp; diffused daylight would be too powerful. The employment of a concave reflector, which may be purchased for a few shillings, ensures parallelism of rays, and is a great improvement. The lamp is placed in the focus of the mirror, which may at once be ascertained by moving it backwards and forwards until an evenly illuminated circle is thrown upon a white screen held in front. This in fact is one of the disadvantages of printing by a naked flame—that the light falls most powerfully upon the central part, and less so upon the edges, of the Negative. The picture must be exposed for a longer or shorter time (about ten seconds will be an average) according to its behaviour during development (see p, 224); this process, as well as the fixing, is conducted in the same manner as for Collodion pictures generally. Some adopt the plan of whitening by Corrosive Sublimate, and again blackening by dilute Ammonia, as an improvement to the colour of the dark shadows (see p. 113). If this mode of printing upon Collodion be conducted with care, the Negative being separated from the film by the smallest interval only, the loss of distinctness in outline will scarcely be perceived. Stereoscopic transparencies may also be printed by the dry Collodion process described in Chapter VI., or by the Collodio-Albumen process. Mr. Llewellyn recommends the employment of a solution of Oxymel, so dilute that the plate becomes nearly dry, and may be laid in contact with the Negative without fear of injury (see the footnote at page 302). |