CHAPTER IV.

Previous

By the aid of the pinion calipers and the old staff, the diameter of the roller seat and the balance and hair-spring collet seats may be readily taken, but it is perhaps better to gauge the holes, as the old staff may not have been perfect in this respect. A round broach will answer admirably for this purpose, and the size may be taken from the broach by means of the calipers. In fitting our pivots, we can not be too exact; and as yet no instrument has been placed upon the market for this purpose which is moderate in price and yet thoroughly reliable. The majority of watchmakers use what is termed the pivot-gauge, a neat little instrument which accompanies the Jacot lathe, and which may be obtained from any material house. This tool, which is shown in Fig. 11, is, however, open to one objection in the measurement of pivots, and that is that it may be pressed down at one time with greater force than at another, and consequently will show a variation in two measurements of the same pivot. Some of my readers may think that I am over-particular on this point, and that the difference in measurement on two occasions is too trivial to be worthy of attention, but I do not think that too much care can be bestowed upon this part of the work, and neglect in this particular is, I think, the cause of poor performance in many otherwise good timepieces. The ordinarily accepted rule among watchmakers is that a pivot should be made 1/2500 of an inch smaller than the hole in the jewel to allow for the proper lubrication. I am acquainted with watchmakers, and men who are termed good workmen, too, who invariably allow 1/2500 of an inch side shake, no matter whether the pivot is 12/2500 or 16/2500 of an inch in diameter. Now if 1/2500 of an inch is the proper side shake for a pivot measuring 12/2500 of an inch in diameter, it is certainly not sufficient for a pivot which is one-third larger. Of course it is understood that side shakes do not increase in proportion according as the pivot increases in size, for if they did a six-inch shaft would require at this rate a side shake of 1/2 inch, or 1/4 inch on each side, which would be ridiculously out of all proportion, as the 1/64 of an inch would be ample under any circumstances. Neither can we arrive at the proper end shake for a pivot by reducing in proportion from the end shake allowed on a six-inch shaft, because if we followed out the same course of reasoning we would arrive at a point where a pivot measuring 12/2500 of an inch would require an end shake so infinitely small that it would require six figures to express the denominator of the fraction, and the most minute measuring instrument yet invented would be incapable of recording the measurement. We must leave sufficient side shake, however, on the smallest pivot and jewel for the globules of the oil to move freely, and experiments have shown conclusively that 1/2500 of an inch or 1/5000 on each side of the pivot, is as little space as it is desirable to leave for that purpose, as the globules of the best chronometer oil will refuse to enter spaces that are very much more minute. But to return to our pivot gauge.

Fig. 11.

Fig. 11.

Fig. 12.

Fig. 12.

Each division on the gauge represents 1/2500 of an inch, which is all that we require. The diameter that the pivot should be, can be ascertained by inserting a round pivot broach into the jewel and taking the measurement with the pivot gauge, and then making the necessary deduction for side shake. Slip the jewel on the broach as far as it will go, as shown in Fig. 12, and then with the pivot gauge, take the size of the broach, as close up to the jewel as you can measure, and the taper of the broach will be about right for the side shake of the pivot. If, however, you prefer to make the measurement still more accurate, you can do so by dipping the broach into rouge before slipping on the jewel and then remove the jewel and the place which is occupied on the broach can be plainly discerned and the exact measurement taken and an allowance of 1/2500 of an inch made for the side shake. Another method, and one which is particularly applicable to Swiss watches, where the jewel is burnished into the cock or plate, is to first slip on to the broach a small flat piece of cork and as the broach enters the jewel the cork is forced farther on to the broach, and when the jewel is removed it marks the place on the broach which its inner side occupied, and the measurement can then be taken with the gauge. If care is used in the selection of a broach, that it be as nearly perfect in round and taper as possible, by a little experiment you can soon ascertain just what part of the length of the broach corresponds to one degree on the gauge and by a repetition of the experiment the broach can then be divided accurately, by very minute rings turned with a fine-pointed graver, into sections, each representing one degree, or 1/2500 of an inch, and the measurement will thus be simplified greatly.

Fig. 13.

Fig. 13.

As before stated, much depends upon the condition of your gravers and the manner of using them. It is of the utmost importance that they be kept sharp, and as soon as they begin to show the slightest sign of losing their keenness, you should sharpen them. The proper shape for balance pivots was shown in Fig. 4. Now let us examine into the best positions for holding the gravers. In Fig. 13 two ways of holding the graver are shown, A representing the right and B representing the wrong way. If the graver is applied to the work as shown at A, it will cut a clean shaving, while if applied as shown at B it will simply scrape the side of the pivot and ruin the point of the graver without materially forwarding the work. Again, the holding of the graver as indicated at A has its advantages, because the force of the cut is towards the hand holding it, and should it catch from any cause the jar of the obstruction will be conveyed immediately to the hand, and it will naturally give and no harm will be done. If, on the other hand, the graver should meet with an obstruction while held in the position indicated at B, the force of the cut will be in the direction of the arrow, downward and toward the rest, and the rest being unlike the hand, or rather being rigid, it cannot give, and the result is that the work, or graver, or both, are ruined. In Fig. 14 two other methods of holding the graver are shown. The general roughing out of a staff should be done with the graver held about as shown at A, Fig. 13; but in finishing, the graver should be held so that the cut is made diagonally, as indicated at A, Fig. 14. It is rather dificult to explain in print just how the graver should be held, but a little experiment will suffice to teach the proper position. The best indication that a graver is doing its work properly, is the fact that the chips come away in long spiral coils. Aim to see how light a cut you can make rather than how heavy. Never use force in removing the material, but depend entirely upon the keenness of the cutting edges. Never use the point of the graver, except where you are compelled to, but rather use the right or left hand cutting edges. By following out this rule you will find that your work, when left by the graver, requires little or no finishing up, except at the pivots.

Fig. 14.

Fig. 14.

At B, Fig. 14, is shown the correct manner of applying the graver when turning a pivot. Hold the graver nearly on a line with the axis of the lathe and catching a chip at the extreme end of the pivot with the back edge of the graver, push slightly forward and at the same time roll the graver towards you and it will give the pivot the desired conical form. By keeping the graver on a line with the length of the pivot, all the force applied is simply exerted in the direction of the chuck, and does not tend to spring the pivot, as it would were the extreme point applied, as in Fig. 13. When we come to such places as the shoulder of the back slope, the seat for the roller, balance, etc., we must necessarily use the point of the graver.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page