The chief requirements of a pivot are that it shall be round and well polished. Avoid the burnish file at all hazards; it will not leave the pivot round, for the pressure is unequal at various points in the revolution. A pivot that was not perfectly round might act fairly well in a jewel hole that was round, but unfortunately the greater proportion of jewel holes are not as they should be, and we must therefore take every precaution to guard against untrue pivots. Let us examine just what the effect will be if an imperfect pivot is fitted into an unround hole jewel, and to demonstrate its action more clearly let us exaggerate the defects. Suppose we pick a perfectly round jewel and insert into the opening a three-cornered piece of steel wire, in shape somewhat resembling the taper of a triangular file. We find that this triangular piece of steel will turn in the jewel with the same ease that the most perfect cylindrical pivot will. Now suppose we change the jewel for one that is out of round and repeat the experiment. We now find that the triangular steel soon finds the hollow spots in the jewel hole and comes to a stand-still as it is inserted in the hole. The action of a pivot that is not true, when in contact with a jewel whose hole is out of round, is very similar, though in a less marked degree. If the pivot inclines toward the elliptical and the jewel hole has a like failing, which is often the case, it is very evident that this want of truth in both the pivot and hole is very detrimental to the good going of a watch.
There are two kinds of pivots, known respectively as straight and conical pivots, but for the balance staff there is but one kind and that is the conical, which is illustrated in Fig. 4. The conical pivot has at least one advantage over the straight one, i. e., it can be made much smaller than a straight pivot, as it is much stronger in proportion, owing to its shape. All pivots have a tendency to draw the oil away from the jewels, and particularly the conically formed variety, which develops a strong capillary attraction. To prevent this capillary attraction of the oil, the back-slope is formed next to the shoulder, although many persons seem to think that this back-slope is merely added by way of ornament, to make the pivot more graceful in appearance. It is very essential, however, for if too much oil is applied the staff would certainly draw it away if its thickness were not reduced, by means of the back-slope. Before leaving the subject of capillarity let us examine the enlarged jewel in Fig. 5; c is an enlarged pivot, b is the hole jewel and a is the end stone. We observe that the hole jewel on the side towards the end stone is convex. It is so made that through capillarity the oil is retained at the end of the pivot where it is most wanted. It is, in my opinion, very necessary that the young watchmaker should have at least a fair understanding of capillarity, and should understand why the end stone is made convex and the pivot with a back slope. For this reason I will try and make clear this point before proceeding further. We all know that it is essential to apply oil to all surfaces coming in contact, in order to reduce the friction as much as possible, and if the application of oil is necessary to any part of the mechanism of a watch, that part is the pivot. Saunier very aptly puts it thus: "A liquid is subject to the action of three forces: gravity, adhesion (the mutual attraction between the liquid and the substance of the vessel containing it), and cohesion (the attractive force existing among the molecules of the liquid and opposing the subdivision of the mass.)"
We all know that if we place a small drop of oil upon a piece of flat glass or steel and then invert the same the oil will cling to the glass, owing to the adhesion of the particles; if we then add a little more to the drop and again invert, it will still cling, although the drop may be elongated to a certain degree. This is owing to the cohesion of the molecules of the oil, which refuse to be separated from one another. If, however, we again add to the drop of oil and invert the plate the drop will elongate and finally part, one portion dropping while the other portion clings to the main body of the liquid. The fall of the drop is occasioned by gravity overcoming the cohesion of the molecules. Now take a perfectly clean and polished needle and place a drop of oil upon its point and we will see that the oil very rapidly ascends towards the thicker portion of the needle. Now if we heat and hammer out the point of the needle into the form of a small drill and repeat the operation we find that the oil no longer ascends. It rises from the point to the extreme width of the drill portion, but refuses to go beyond. It clings to that portion of the needle which would correspond to the ridge just back of the slope in a conical pivot. Water, oil, etc., when placed in a clean wine glass, do not exhibit a perfectly level surface, but raise at the edges as shown at a in Fig. 6. If a tube is now inserted, we find that the liquid not only rises around the outside of the tube and the edges of the vessel, but also rises in the tube far beyond its mean level, as shown at b. These various effects are caused by one of the forces above described, i. e., the adhesion, or mutual attraction existing between the liquid and the substance of the vessel and rod. The word capillarity is of Latin derivation, and signifies hair-like slenderness. The smaller the tube, or the nearer the edges of a vessel are brought together, the higher in proportion will the liquid rise above the level. An ascent of a liquid, due to capillarity, also takes place, where the liquid is placed between two separate bodies, as oil placed between two pieces of flat glass. If the plates are parallel to one another and perpendicular to the surface of the liquid it will ascend to the same height between the plates, as shown at c in Fig. 6. If the plates were united at the back like a book and spread somewhat at the front, the oil would ascend the higher as the two sides approach one another, as shown at d, Fig. 6. If a drop is placed somewhat away from the intersecting point, of the glasses, as shown at m it will, if not too far away, gradually work its way to the junction, providing the glasses are level. If, however, the glasses are inclined to a certain extent, the drop will remain stationary, since it is drawn in one direction by gravity and in the other by capillarity. When a drop of oil is placed between two surfaces, both of which are convex, or one convex and the other plain, as shown at g, it will collect at the point n, at which the surfaces nearest approach one another. We now see very clearly why the hole jewel is made convex on the side towards the end-stone and concave on the side towards the pivot.
Particular pains should be taken to polish those portions of the pivots which actually enter the jewel hole and to see that all marks of the graver be thoroughly removed, because if any grooves, no matter how small, are left, they act as minute capillary tubes to convey the oil.
If the hole jewel be of the proper shape, the end-stone not too far from the hole jewel and too much oil is not applied at one time, the oil will not spread nor run down the staff, but a small portion will be retained at the acting surface of pivot and jewel, and this supply will be gradually fed to these parts from the reservoir between the jewel and end-stone, by the action of capillarity.
Having examined into the requirements of the pivot and its jewel and having gained an insight into what their forms should be, we are the better able to perform that portion of the work in an intelligent manner.