THE NEW HEAVENS Go out under the open sky, on a clear and moon-less night, and try to count the stars. If your station lies well beyond the glare of cities, which is often strong enough to conceal all but the brighter objects, you will find the task a difficult one. Ranging through the six magnitudes of the Greek astronomers, from the brilliant Sirius to the faintest perceptible points of light, the stars are scattered in great profusion over the celestial vault. Their number seems limitless, yet actual count will show that the eye has been deceived. In a survey of the entire heavens, from pole to pole, it would not be possible to detect more than from six to seven thousand stars with the naked eye. From a single viewpoint, even with the keenest vision, only two or three thousand can be seen. So many of these are at the limit of visibility that Ptolemy's "Almagest," a catalogue of all the stars whose places were measured with the simple instruments of the Greek astronomers, contains only 1,022 stars. Back of Ptolemy, through the speculations of the Greek philosophers, the mysteries of the Egyptian sun-god, and the observations of the ancient Chaldeans, the rich and varied traditions of astronomy stretch far away into a shadowy past. All peoples, in the first stirrings of their intellectual youth, drawn by the nightly splendor of the skies and the ceaseless motions of the planets, have set up some system of the heavens, in which the sense of wonder and the desire for knowledge were no less concerned than the practical necessities of life. The measurement of time and the needs of navigation have always stimulated astronomical research, but the intellectual demand has been keen from the first. Hipparchus and the Greek astronomers of the Alexandrian school, shaking off the vagaries of magic and divination, placed astronomy on a scientific basis, though the reaction of the Middle Ages caused even such a great astronomer as Tycho Brahe himself to revert for a time to the practice of astrology. EARLY INSTRUMENTSThe transparent sky of Egypt, rarely obscured by clouds, greatly favored Ptolemy's observations. Here was prepared his great star catalogue, based upon the earlier observations of Hipparchus, and destined to remain alone in its field for more than twelve centuries, until Ulugh Bey, Prince of Samarcand, repeated the work of his Greek predecessor. Throughout this period the stars were looked upon mainly as points of reference for the observation of planetary motions, and the instruments of observation underwent little change. The astrolabe, which consists of a circle divided into degrees, with a rotating diametral arm for sighting purposes, embodies their essential principle. In its simple form, the astrolabe was suspended in a vertical plane, and the stars were observed by bringing the sights on the movable diameter to bear upon them. Their altitude was then read off on the circle. Ultimately, the circle of the astrolabe, mounted with one of its diameters parallel to the earth's axis, became the armillary sphere, the precursor of our modern equatorial telescope. Great stone quadrants fixed in the meridian were also employed from very early times. Out of such furnishings, little modified by the lapse of centuries, was provided the elaborate instrumental equipment of Uranibourg, the great observatory built by Tycho Brahe on the Danish island of Huen in 1576. In this "City of the Heavens," still dependent solely upon the unaided eye as a collector of starlight, Tycho made those invaluable observations that enabled Kepler to deduce the true laws of planetary motion. But after all these centuries the sidereal world embraced no objects, barring an occasional comet or temporary star, that lay beyond the vision of the earliest astronomers. The conceptions of the stellar universe, except those that ignored the solid ground of observation, were limited by the small aperture of the human eye. But the dawn of another age was at hand. Fig. 2. The Great Nebula in Orion (Pease). Photographed with the 100-inch telescope. This short-exposure photograph shows only the bright central part of the nebula. A longer exposure reveals a vast outlying region. The dominance of the sun as the central body of the solar system, recognized by Aristarchus of Samos nearly three centuries before the Christian era, but subsequently denied under the authority of Ptolemy and the teachings of the Church, was reaffirmed by the Polish monk Copernicus in 1543. Kepler's laws of the motions of the planets, showing them to revolve in ellipses instead of circles, removed the last defect of the Copernican system, and left no room for its rejection. But both the world and the Church clung to tradition, and some visible demonstration was urgently needed. This was supplied by Galileo through his invention of the telescope. Fig. 3. Model by Ellerman of summit of Mount Wilson, showing the observatory buildings among the trees and bushes. The 60-foot tower on the extreme left, which is at the edge of a precipitous caÑon 1,500 feet deep, is the vertical telescope of the Smithsonian Astrophysical Observatory. Above it are the "Monastery" and other buildings used as quarters by the astronomers of the Mount Wilson Observatory while at work on the mountain. (The offices, computing-rooms, laboratories, and shops are in Pasadena.) Following the ridge, we come successively to the dome of the 10-inch photographic telescope, the power-house, laboratory, Snow horizontal telescope, 60-foot-tower telescope, and 150-foot-tower telescope, these last three used for the study of the sun. The dome of the 60-inch reflecting telescope is just below the 150-foot tower, while that of the 100-inch telescope is farther to the right. The altitude of Mount Wilson is about 5,900 feet. The crystalline lens of the human eye, limited by the iris to a maximum opening about one-quarter of an inch in diameter, was the only collector of starlight available to the Greek and Arabian astronomers. Galileo's telescope, which in 1610 suddenly pushed out the boundaries of the known stellar universe and brought many thousands of stars into range, had a lens about 2-1/4 inches in diameter. The area of this lens, proportional to the square of its diameter, was about eighty-one times that of the pupil of the eye. This great increase in the amount of light collected should bring to view stars down to magnitude 10.5, of which nearly half a million are known to exist. It is not too much to say that Galileo's telescope revolutionized human thought. Turned to the moon, it revealed mountains, plains, and valleys, while the sun, previously supposed immaculate in its perfection, was seen to be blemished with dark spots changing from day to day. Jupiter, shown to be accompanied by four encircling satellites, afforded a picture in miniature of the solar system, and strongly supported the Copernican view of its organization, which was conclusively demonstrated by Galileo's discovery of the changing phases of Venus and the variation of its apparent diameter during its revolution about the sun. Galileo's proof of the Copernican theory marked the downfall of mediÆvalism and established astronomy on a firm foundation. But while his telescope multiplied a hundredfold the number of visible stars, more than a century elapsed before the true possibilities of sidereal astronomy were perceived. Fig. 4. The 100-inch Hooker telescope. STRUCTURE OF THE UNIVERSESir William Herschel was the first astronomer to make a serious attack upon the problem of the structure of the stellar universe. In his first memoir on the "Construction of the Heavens," read before the Royal Society in 1784, he wrote as follows: "Hitherto the sidereal heavens have, not inadequately for the purpose designed, been represented by the concave surface of a sphere in the centre of which the eye of an observer might be supposed to be placed.... In future we shall look upon those regions into which we may now penetrate by means of such large telescopes, as a naturalist regards a rich extent of ground or chain of mountains containing strata variously inclined and directed as well as consisting of very different materials." On turning his 18-inch reflecting telescope to a part of the Milky Way in Orion, he found its whitish appearance to be completely resolved into small stars, not separately seen with his former telescopes. "The glorious multitude of stars of all possible sizes that presented themselves here to my view are truly astonishing; but as the dazzling brightness of glittering stars may easily mislead us so far as to estimate their number greater than it really is, I endeavored to ascertain this point by counting many fields, and computing from a mean of them, what a certain given portion of the Milky Way might contain." By this means, applied not only to the Milky Way but to all parts of the heavens, Herschel determined the approximate number and distribution of all the stars within reach of his instrument. By comparing many hundred gauges or counts of stars visible in a field of about one-quarter of the area of the moon, Herschel found that the average number of stars increased toward the great circle which most nearly conforms with the course of the Milky Way. Ninety degrees from this plane, at the pole of the Milky Way, only four stars, on the average, were seen in the field of the telescope. In approaching the Milky Way this number increased slowly at first, and then more and more rapidly, until it rose to an average of 122 stars per field. Fig. 5. Erecting the polar axis of the 100-inch telescope. These observations were made in the northern hemisphere, and subsequently Sir John Herschel, using his father's telescope at the Cape of Good Hope, found an almost exactly similar increase of apparent star density for the southern hemisphere. According to his estimates, the total number of stars in both hemispheres that could be seen distinctly enough to be counted in this telescope would probably be about five and one-half millions. The Herschels concluded that "the stars of our firmament, instead of being scattered in all directions indifferently through space, form a stratum of which the thickness is small, in comparison with its length and breadth; and in which the earth occupies a place somewhere about the middle of its thickness, between the point where it subdivides into two principal laminÆ inclined at a small angle to each other." This view does not differ essentially from our modern conception of the form of the Galaxy; but as the Herschels were unable to see stars fainter than the fifteenth magnitude, it is evident that their conclusions apply only to a restricted region surrounding the solar system, in the midst of the enormously extended sidereal universe which modern instruments have brought within our range. MODERN METHODSThe remarkable progress of modern astronomy is mainly due to two great instrumental advances: the rise and development of the photographic telescope, and the application of the spectroscope to the study of celestial objects. These new and powerful instruments, supplemented by many accessories which have completely revolutionized observatory equipment, have not only revealed a vastly greater number of stars and nebulÆ: they have also rendered feasible observations of a type formerly regarded as impossible. The chemical analysis of a faint star is now so easy that it can be accomplished in a very short time—as quickly, in fact, as an equally complex substance can be analyzed in the laboratory. The spectroscope also measures a star's velocity, the pressure at different levels in its atmosphere, its approximate temperature, and now, by a new and ingenious method, its distance from the earth. It determines the velocity of rotation of the sun and of nebulÆ, the existence and periods of orbital revolution of binary stars too close to be separated by any telescope, the presence of magnetic fields in sunspots, and the fact that the entire sun, like the earth, is a magnet. Fig. 6. Lowest section of tube of 100-inch telescope, ready to leave Pasadena for Mount Wilson. Such new possibilities, with many others resulting from the application of physical methods of the most diverse character, have greatly enlarged the astronomer's outlook. He may now attack two great problems: (1) The structure of the universe and the motions of its constituent bodies, and (2) the evolution of the stars: their nature, origin, growth, and decline. These two problems are intimately related and must be studied as one.[*] [Footnote *: A third great problem open to the astronomer, the study of the constitution of matter, is described in Chapter III.] If space permitted, it would be interesting to survey the progress already accomplished by modern methods of astronomical research. Hundreds of millions of stars have been photographed, and the boundaries of the stellar universe have been pushed far into space, but have not been attained. Globular star clusters, containing tens of thousands of stars, are on so great a scale (according to Shapley) that light, travelling at the rate of 186,000 miles per second, may take 500 years to cross one of them, while the most distant of these objects may be more than 200,000 light-years from the earth. The spiral nebulÆ, more than a million in number, are vast whirling masses in process of development, but we are not yet certain whether they should be regarded as "island universes" or as subordinate to the stellar system which includes our minute group of sun and planets, the great star clouds of the Milky Way, and the distant globular star clusters. Fig. 7. Section of a steel girder for dome covering the 100-inch telescope, on its way up Mount Wilson. These few particulars may give a slight conception of the scale of the known universe, but a word must be added regarding some of its most striking phenomena. The great majority of the stars whose motions have been determined belong to one or the other of two great star streams, but the part played by these streams in the sidereal system as a whole is still obscure. The stars have been grouped in classes, presumably in the order of their evolutional development, as they pass from the early state of gaseous masses, of low density, through the successive stages resulting from loss of heat by radiation and increased density due to shrinkage. Strangely enough, their velocities in space show a corresponding change, increasing as they grow older or perhaps depending upon their mass. It is impossible within these limits to do more than to give some indication of the scope of the new astronomy. Enough has been said, however, to assist in appreciating the increased opportunity for investigation, and the nature of the heavy demands made upon the modern observatory. But before passing on to describe one of the latest additions to the astronomer's instrumental equipment, a word should be added regarding the chief classes of telescopes. REFRACTORS AND REFLECTORSAstronomical telescopes are of two types: refractors and reflectors. A refracting telescope consists of an object-glass composed of two or more lenses, mounted at the upper end of a tube, which is pointed at the celestial object. The light, after passing through the lenses, is brought to a focus at the lower end of the tube, where the image is examined visually with an eyepiece, or photographed upon a sensitive plate. The largest instruments of this type are the 36-inch Lick telescope and the 40-inch refractor of the Yerkes Observatory. Fig. 8. Erecting the steel building and revolving dome that cover the Hooker telescope. Reflecting telescopes, which are particularly adapted for photographic work, though also excellent for visual observations, are very differently constructed. No lens is used. The telescope tube is usually built in skeleton form, open at its upper end, and with a large concave mirror supported at its base. This mirror serves in place of a lens. Its upper surface is paraboloidal in shape, as a spherical surface will not unite in a sharp focus the rays coming from a distant object. The light passes through no glass—a great advantage, especially for photography, as the absorption in lenses cuts out much of the blue and violet light, to which photographic plates are most sensitive. The reflection occurs on the upper surface of the mirror, which is covered with a coat of pure silver, renewed several times a year and always kept highly burnished. Silvered glass is better than metals or other substances for telescope mirrors, chiefly because of the perfection with which glass can be ground and polished, and the ease of renewing its silvered surface when tarnished. The great reflectors of Herschel and Lord Rosse, which were provided with mirrors of speculum metal, were far inferior to much smaller telescopes of the present day. With these instruments the star images were watched as they were carried through the field of view by the earth's rotation, or kept roughly in place by moving the telescope with ropes or chains. Photographic plates, which reveal invisible stars and nebulÆ when exposed for hours in modern instruments, were not then available. In any case they could not have been used, in the absence of the perfect mechanism required to keep the star images accurately fixed in place upon the sensitive film. Fig. 9. Building and revolving dome, 100 feet in diameter, covering the 100-inch Hooker telescope. Photographed from the summit of the 150-foot-tower telescope. It would be interesting to trace the long contest for supremacy between refracting and reflecting telescopes, each of which, at certain stages in its development, appeared to be unrivalled. In modern observatories both types are used, each for the purpose for which it is best adapted. For the photography of nebulÆ and the study of the fainter stars, the reflector has special advantages, illustrated by the work of such instruments as the Crossley and Mills reflectors of the Lick Observatory; the great 72-inch reflector, recently brought into effective service at the Dominion Observatory in Canada; and the 60-inch and 100-inch reflectors of the Mount Wilson Observatory. The unaided eye, with an available area of one-twentieth of a square inch, permits us to see stars of the sixth magnitude. Herschel's 18-inch reflector, with an area 5,000 times as great, rendered visible stars of the fifteenth magnitude. The 60-inch reflector, with an area 57,600 times that of the eye, reveals stars of the eighteenth magnitude, while to reach stars of about the twentieth magnitude, photographic exposures of four or five hours suffice with this instrument. Every gain of a magnitude means a great gain in the number of stars rendered visible. Stars of the second magnitude are 3.4 times as numerous as those of the first, those of the eighth magnitude are three times as numerous as those of the seventh, while the sixteenth magnitude stars are only 1.7 as numerous as those of the fifteenth magnitude. This steadily decreasing ratio is probably due to an actual thinning out of the stars toward the boundaries of the stellar universe, as the most exhaustive tests have failed to give any evidence of absorption of light in its passage through space. But in spite of this decrease, the gain of a single additional magnitude may mean the addition of many millions of stars to the total of those already shown by the 60-inch reflector. Here is one of the chief sources of interest in the possibilities of a 100-inch reflecting telescope. 100-INCH TELESCOPEFig. 10. One-hundred-inch mirror, just silvered, rising out of the silvering-room in pier before attachment to lower end of telescope tube. (Seen above.) In 1906 the late John D. Hooker, of Los Angeles, gave the Carnegie Institution of Washington a sum sufficient to construct a telescope mirror 100 inches in diameter, and thus large enough to collect 160,000 times the light received by the eye. (Fig. 10.) The casting and annealing of a suitable glass disk, 101 inches in diameter and 13 inches thick, weighing four and one-half tons, was a most difficult operation, finally accomplished by a great French glass company at their factory in the Forest of St. Gobain. A special optical laboratory was erected at the Pasadena headquarters of the Mount Wilson Observatory, and here the long task of grinding, figuring, and testing the mirror was successfully carried out by the observatory opticians. This operation, which is one of great delicacy, required years for its completion. Meanwhile the building, dome, and mounting for the telescope were designed by members of the observatory staff, and the working drawings were prepared. An opportune addition by Mr. Carnegie to the endowment of the Carnegie Institution of Washington, of which the observatory is a branch, permitted the necessary appropriations to be made for the completion and erection of the telescope. Though delayed by the war, during which the mechanical and optical facilities of the observatory shops were utilized for military and naval purposes, the telescope is now in regular use on Mount Wilson. The instrument is mounted on a massive pier of reinforced concrete, 33 feet high and 52 feet in diameter at the top. A solid wall extends south from this pier a distance of 50 feet, on the west side of which a very powerful spectrograph, for photographing the spectra of the brightest stars, will be mounted. Within the pier are a photographic dark room, a room for silvering the large mirror (which can be lowered into the pier), and the clock-room, where stands the powerful driving-clock, with which the telescope is caused to follow the apparent motion of the stars. (Fig. 11.) Fig. 11. The driving-clock and worm-gear that cause the 100-inch Hooker telescope to follow the stars. The telescope mounting is of the English type, in which the telescope tube is supported by the declination trunnions between the arms of the polar axis, built in the form of a rectangular yoke carried by bearings on massive pedestals to the north and south. These bearings must be aligned exactly parallel to the axis of the earth, and must support the polar axis so freely that it can be rotated with perfect precision by the driving-clock, which turns a worm-wheel 17 feet in diameter, clamped to the lower end of the axis. As this motion must be sufficiently uniform to counteract exactly the rotation of the earth on its axis, and thus to maintain the star images accurately in position in the field of view, the greatest care had to be taken in the construction of the driving-clock and in the spacing and cutting of the teeth in the large worm-wheel. Here, as in the case of all of the more refined parts of the instrument, the work was done by skilled machinists in the observatory shops in Pasadena or on Mount Wilson after the assembling of the telescope. The massive sections of the instrument, some of which weigh as much as ten tons each, were constructed at Quincy, Mass., where machinery sufficiently large to build battleships was available. They were then shipped to California, and transported to the summit of Mount Wilson over a road built for this purpose by the construction division of the observatory, which also built the pier on which the telescope stands, and erected the steel building and dome that cover it. Fig. 12. Large irregular nebula and star cluster in Sagittarius (Duncan). Photographed with the 60-inch telescope. Fig. 13. Faint spiral nebula in the constellation of the Hunting Dogs (Pease). Photographed with the 60-inch telescope. The parts of the telescope which are moved by the driving-clock weigh about 100 tons, and it was necessary to provide means of reducing the great friction on the bearings of the polar axis. To accomplish this, large hollow steel cylinders, floating in mercury held in cast-iron tanks, were provided at the upper and lower ends of the polar axis. Almost the entire weight of the instrument is thus floated in mercury, and in this way the friction is so greatly reduced that the driving-clock moves the instrument with perfect ease and smoothness. The 100-inch mirror rests at the bottom of the telescope tube on a special support system, so designed as to prevent any bending of the glass under its own weight. Electric motors, forty in number, are provided to move the telescope rapidly or slowly in right ascension (east or west) and in declination (north or south), for focussing the mirrors, and for many other purposes. They are also used for rotating the dome, 100 feet in diameter, under which the telescope is mounted, and for opening the shutter, 20 feet wide, through which the observations are made. A telescope of this kind can be used in several different ways. The 100-inch mirror has a focal length of about 42 feet, and in one of the arrangements of the instrument, the photographic plate is mounted at the centre of the telescope tube near its upper end, where it receives directly the image formed by the large mirror. In another arrangement, a silvered glass mirror, with plane surface, is supported near the upper end of the tube at an angle of 45°, so as to form the image at the side of the tube, where the photographic plate can be placed. In this case, the observer stands on a platform, which is moved up and down by electric motors in front of the opening in the dome through which the observations are made. Fig. 14. Spiral nebula in Andromeda, seen edge on (Ritchey). Photographed with the 60-inch telescope. Other arrangements of the telescope, for which auxiliary convex mirrors carried near the upper end of the tube are required, permit the image to be photographed at the side of the tube near its lower end, either with or without a spectrograph; or with a very powerful spectrograph mounted within a constant-temperature chamber south of the telescope pier. In this last case, the light of a star is so reflected by auxiliary mirrors that it passes down through a hole in the south end of the polar axis and brings the star to a focus on the slit of the fixed spectrograph. ATMOSPHERIC LIMITATIONSThe huge dimensions of such a powerful engine of research as the Hooker telescope are not in themselves a source of satisfaction to the astronomer, for they involve a decided increase in the labor of observation and entail very heavy expense, justifiable only in case important results, beyond the reach of other instruments, can be secured. The construction of a telescope of these dimensions was necessarily an experiment, for it was by no means certain, after the optical and mechanical difficulties had been overcome, that even the favorable atmosphere of California would be sufficiently tranquil to permit sharply defined celestial images to be obtained with so large an aperture. It is therefore important to learn what the telescope will actually accomplish under customary observing conditions. Fortunately we are able to measure the performance of the instrument with certainty. Close beside it on Mount Wilson stands the 60-inch reflector, of similar type, erected in 1908. The two telescopes can thus be rigorously compared under identical atmospheric conditions. The large mirror of the 100-inch telescope has an area about 2.8 times that of the 60-inch, and therefore receives nearly three times as much light from a star. Under atmospheric conditions perfect enough to allow all of this light to be concentrated in a point, it should be capable of recording on a photographic plate, with a given exposure, stars about one magnitude fainter than the faintest stars within reach of the 60-inch. The increased focal length, permitting such objects as the moon to be photographed on a larger scale, should also reveal smaller details of structure and render possible higher accuracy of measurement. Finally, the greater theoretical resolving power of the larger aperture, providing it can be utilized, should permit the separation of the members of close double stars beyond the range of the smaller instrument. CRITICAL TESTSThe many tests already made indicate that the advantages expected of the new telescope will be realized in practice. The increased light-gathering power will mean the addition of many millions of stars to those already known. Spectroscopic observations now in regular progress have carried the range of these investigations far beyond the possibilities of the 60-inch telescope. A great class of red stars, for example, almost all the members of which were inaccessible to the 60-inch, are now being made the subject of special study. And in other fields of research equal advantages have been gained. The increase in the scale of the images over those given by the 60-inch telescope is illustrated by two photographs of the Ring Nebula in Lyra, reproduced in Fig. 18. The Great Nebula in Orion, photographed with the 100-inch telescope with a comparatively short exposure, sufficient to bring out the brighter regions, is reproduced in Fig. 2. It is interesting to compare this picture with the small-scale image of the same nebula shown in Fig. 1. Fig. 15. Photograph of the moon made on September 15, 1919, with the 100-inch Hooker telescope (Pease). The ring-like formations are the so-called craters, most of them far larger than anything similar on the earth. That in the lower left corner with an isolated mountain in the centre is Albategnius, sixty-four miles in diameter. Peaks in the ring rise to a height of fifteen thousand feet above the central plain. Note the long sunset shadows cast by the mountains on the left. The level region below on the right is an extensive plain, the Mare Nubium. Fig. 16. Photograph of the moon made on September 15, 1919, with the 100-inch Hooker telescope (Pease). The mountains above and to the left are the lunar Apennines; those on the left just below the centre are the Alps. Both ranges include peaks from fifteen thousand to twenty thousand feet in height. In the upper right corner is Copernicus, about fifty miles in diameter. The largest of the conspicuous group of three just below the Apennines is Archimedes and at the lower end of the Alps is Plato. Note the long sunset shadows cast by the isolated peaks on the left. The central portion of the picture is a vast plain, the Mare Imbrium. The sharpness of the images given by the new telescope may be illustrated by some recent photographs of the moon, obtained with an equivalent focal length of 134 feet. In Fig. 15 is shown a rugged region of the moon, containing many ring-like mountains or craters. Fig. 16 shows the great arc of the lunar Apennines (above) and the Alps (below), to the left of the broad plain of the Mare Imbrium. The starlike points along the moon's terminator, which separates the dark area from the region upon which the sun (on the right) shines, are the mountain peaks, about to disappear at sunset. The long shadows cast by the mountains just within the illuminated area are plainly seen. Some of the peaks of the lunar Apennines attain a height of 20,000 feet. In less powerful telescopes the stars at the centre of the great globular clusters are so closely crowded together that they cannot be studied separately with the spectrograph. Moreover, most of them are much too faint for examination with this instrument. At the 134-foot focus the 100-inch telescope gives a large-scale image of such clusters, and permits the spectra of stars as faint as the fifteenth magnitude to be separately photographed. Fig. 17. Hubble's Variable Nebula. One of the few nebulÆ known to vary in brightness and form. Photographed with the 100-inch telescope (Hubble). CLOSE DOUBLE STARSA remarkable use of the 100-inch telescope, which permits its full theoretical resolving power to be not merely attained but to be doubled, has been made possible by the first application of Michelson's interference method to the measurement of very close double stars. When employing this, the 100-inch mirror is completely covered, except for two slits. Beams of light from a star, entering by the slits, unite at the focus of the telescope, where the image is examined by an eyepiece magnifying about five thousand diameters. Across the enlarged star image a series of fine, sharp fringes is seen, even when the atmospheric conditions are poor. If the star is single the fringes remain visible, whatever the distance between the slits. But in the case of a star like Capella, previously inferred to be double from the periodic displacement of the lines in its spectrum, but with components too close together to be distinguished separately, the fringes behave differently. As the slits are moved apart a point is reached where the fringes completely disappear, only to reappear as the separation is continued. This effect is obtained when the slits are at right angles to the line joining the two stars of the pair, found by this method to be 0.0418 of a second of arc apart (on December 30, 1919). Subsequent measures, of far greater precision than those obtainable by other methods in the case of easily separated double stars, show the rapid orbital motion of the components of the system. This device will be applied to other close binaries, hitherto beyond the reach of measurement. Fig. 18. Ring Nebula in Lyra, photographed with the 60-inch (Ritchey) and 100-inch (Duncan) telescopes. Showing the increased scale of the images given by the larger instrument. Without entering into further details of the tests, it is evident that the new telescope will afford boundless possibilities for the study of the stellar universe.[*] The structure and extent of the galactic system, and the motions of the stars comprising it; the distribution, distances, and dimensions of the spiral nebulÆ, their motions, rotation, and mode of development; the origin of the stars and the successive stages in their life history: these are some of the great questions which the new telescope must help to answer. In such an embarrassment of riches the chief difficulty is to withstand the temptation toward scattering of effort, and to form an observing programme directed toward the solution of crucial problems rather than the accumulation of vast stores of miscellaneous data. This programme will be supplemented by an extensive study of the sun, the only star near enough the earth to be examined in detail, and by a series of laboratory investigations involving the experimental imitation of solar and stellar conditions, thus aiding in the interpretation of celestial phenomena. [Footnote *: It is not adapted for work on the sun, as the mirrors would be distorted by its heat. Three other telescopes, especially designed for solar observations, are in use on Mount Wilson.] |