The simplest forms of life—Cell theory and cell dogma—Precellular organisms: monera, cytodes, and cells—Actual monera—Chromacea (cyanophyceÆ)—Chromatophora—Coenobia of chromacea: vital phenomena—Bacteria—Relations of the bacteria to the chromacea, the fungi, and the protozoa—Rhizomonera (protamoeba, protogenes, protomyxa, bathybius)—Problematic monera—Phytomonera (plasmodoma) and zoomonera (plasmophaga)—Transition between the two classes. In the study and explanation of all complex phenomena the first thing to do is to understand the simple parts, the manner of their combination, and the development of the compound from the simple. This principle applies generally to inorganic objects, such as minerals, artificially constructed machines, etc. It is also of general application in biological work. The efforts of comparative anatomy are directed to the comprehension of the intricate structure of the higher organisms from the rising scale of organization and life in the lower, and the origin of the former by historical development from the latter. The modern science of the cell (cytology), which has in a short time attained a considerable rank, pursues a method in opposition to this principle. The intricate composition of the unicellular organism, in many of the higher protists (such as the ciliata and infusoria) and many of the higher tissue-cells (such as the neurona) has led to the erroneous ascription of a The modern treatment of the science, as we find it in numbers of recent works, even in some of the most distinguished manuals, and which we must resent on account of its dogmatism, culminates in something like the following theses: 1. The nucleated cell is the general elementary organism; all living things are either unicellular, or made up of a number of cells and tissues. 2. This elementary organism consists of at least two different organs (or, more correctly, organella), the internal nucleus and the outer cell-body (or cytoplasm). 3. The matter in each of these cell-organs—the caryoplasm of the nucleus and the cytoplasm of the body—is never homogeneous (or consisting of a chemical substratum), but always "organized," or made up of several chemically and anatomically different elementary constituents. 4. The plasm (or protoplasm) is, therefore, a morphological, not a chemical, unity. 5. Every cell comes (and has come) only from a mother-cell, and every nucleus from a mother-nucleus (omnis cellula e cellula—omnis nucleus e nucleo). These five theses of the modern cell-dogma are by no means sound; they are incompatible with the theory of evolution. I have, therefore, consistently resisted them for thirty-eight years, and consider them to be so dangerous that I will briefly give my reasons. First, let us clearly understand the modern definition of the cell. It is now generally defined (in accordance with the second thesis) as being composed of two essentially different parts, the nucleus and the cell-body, and it is added that these organella differ constantly both in The earliest organisms to live on the earth, with which the wonderful drama of life began, can, in the present condition of biological science, only be conceived as homogeneous particles of plasm—biogens or groups of biogens, in which there was not yet the division of nucleus and cell-body which characterizes the real cell. I gave the name "cytodes" to these unnucleated cells in 1866, and joined them with the real nucleated cells under the general head of "plastids." I also endeavored to prove that such cytodes still exist in the form of independent monera, and in 1870 I described in my Monograph on the Monera a number of protists which do not tally with the above definition. Fifty years ago I made the first careful observations of living monera (protamoeba and protogenes), and described them in my General Morphology (vol. i., pp. 133-5; vol. ii., p. xxii.) as structureless organisms without organs and the real beginnings of organic life. Soon afterwards, during a stay in the Canary Islands, I succeeded in following the continuous life-history of a related organism of the rhizopod type, which behaved like a very simple mycetozoon, but differed in having no nucleus; I have reproduced the picture of it in the first plate of my History of Creation. The description of this orange-red Among living organisms the chromacea are certainly the most primitive and the nearest to the oldest inhabitants of the earth. Their simplest forms, the chroococcacea, are nothing but small structureless particles of plasm, growing by plasmodomism (formation of plasm) and multiplying by simple cleavage as soon as their growth passes a certain limit of individual size. Many of them are surrounded by a thin membrane or somewhat thicker gelatinous covering, and this circumstance had prevented me for some time from counting the chromacea as monera. However, I became convinced afterwards that the formation of a protective cover of this kind around the homogeneous particle of plasm may indeed be regarded from the physiological stand-point as a "purposive" structure, but at the same time may be The chromacea are to-day found in every part of the earth, living sometimes in fresh water and sometimes in the sea. Many species form blue-green, violet, or reddish deposits on rocks, stones, wood, and other objects. In these thin gelatinous plates millions of small homogeneous cytodes are packed close together. Their tint is due to a peculiar coloring matter (phycocyan), which is chemically connected with the substance of the plasma-particle. The shade of this color differs a good deal in the various species of chromacea (of which more than eight hundred have been distinguished); in the native species it is generally blue-green or sage-green, sometimes blue, cyanine blue, or violet. Hence the common name cyanophyceÆ (i.e., blue algÆ). It is incorrect, for two reasons; firstly, because only a part of these protophyta are blue, and, secondly, because they (as simple, primitive plants without tissue) must be distinguished from the real algÆ (phyceÆ), which are multicellular, tissue-forming plants. Other chromacea are red, orange, or yellow in color, as the interesting trichodesmium erythrÆum, for instance, the flaky masses of which, gathering in enormous quantities, cause at certain times the yellow or red coloring of the sea-water in the tropics; it is these that are responsible for the name "Red Sea" on the Arabian and "Yellow Sea" on the Chinese coast. When I passed the equator in the Sunda Straits on March 10, 1901, the boat sailed through colossal accumulations, several miles in width, of this trichodesmium. The yellow or reddish surface of the water looked as if it were strewn with sawdust. It is clearly quite illogical to regard the chromacea as a class or family of the algÆ, as is still done in most manuals of botany. The real algÆ—excluding the unicellular diatomes and paulotomes, which belong to the protophyta—are multicellular plants that form a thallus or bed of a certain form and characteristic tissue. The chromacea, which have not advanced as far as the real nucleated cell, are unnucleated cytodes of a lower and earlier stage of plant-life. If one would compare the chromacea with algÆ or other plants at all, the comparison cannot be with their constituent cells, but merely with the chromatophora or chromatella, which are found in all green plant-cells, and form part of their contents. To be more precise, these green granules of chlorophyll must be regarded as organella of the plant-cell, or separated plasma-formations which arise beside the nucleus in the cytoplasm. In the embryonic cells of the germs of plants and in their vegetation points the chromatophora are as yet colorless, and are developed, as solid, very refractive, globular, or roundish granules, from the firm layer of plasm which immediately surrounds the nucleus. Afterwards they are converted, by a chemical process, into the green chlorophyll granules or chloroplasts, which have the most important function in the plasmodomism or carbon-assimilation of the plant. The fact that the green chlorophyll granules grow independently within the living plant-cell and multiply by segmentation is very important and interesting. The globular chloroplasts are constricted in the middle, and split into two equal daughter-globules. These daughter-plastids grow, and multiply in turn in the same way. Many species of the simplest chromacea live as monobia (individually). When the tiny plasma globules have split into two equal halves by simple segmentation, they separate, and live their lives apart. This is the case with the common, ubiquitous chroococcus. However, most species live in common, the plasma granules forming more or less thick coenobia, or communities or colonies of cells. In the simplest case (aphanocapsa) the social cytodes secrete a structureless gelatinous mass, in which numbers of blue-green plasma globules are irregularly distributed. In the gloeocapsa, which forms a thin blue-green gelatinous deposit on damp walls and rocks, the constituent cytodes cover themselves immediately after cleavage with a fresh gelatinous envelope, and these run together into large masses. But the majority of the chromacea form firm, threadlike cell communities or chains of plastids (catenal coenobia.) As the transverse cleavage of the rapidly multiplying cytodes always follows the same direction, and the new daughter-cytodes remain joined at the cleavage surfaces, and are flattened into discoid shape, we get stringlike formations or articulated threads of considerable length, as in the oscillaria and nostochina. When a number of these threads are joined together in gelatinous masses, we often get large, irregular, jelly-like bodies, as in the common "shooting-star jellies" (nostoc communis). They attain the size of a plum. In view of the extreme importance which I attach to 1. The organism of the simplest chromacea is not composed of different organella or organs; and it shows no trace of purposive construction or definite architecture. 2. The homogeneous tinted plasma granule which makes up the entire organism in the simplest case (chroococcus) exhibits no plasma structure (honeycomb, threads, etc.) whatever. 3. The original globular form of the plasma particle is the simplest of all fundamental types, and is also that assumed by the inorganic body (such as a drop of rain) in a condition of stable equilibrium. 4. The formation of a thin membrane at the surface of the structureless plasma granule may be explained as a purely physical process—that of surface strain. 5. The gelatinous envelope which is secreted by many of the chromacea is also formed by a simple physical (or chemical) process. 6. The sole essential vital function that is common to all the chromacea is self-maintenance, and growth by means of their vegetal metabolism, or plasmodomism (=carbon assimilation); this purely chemical process is on a level with the catalysis of inorganic compounds (chapter x.). 7. The growth of the cytodes, in virtue of their continuous plasmodomism, is on a level with the physical process of crystal growth. 8. The reproduction of the chromacea by simple cleavage is merely the continuation of this simple growth process, when it passes the limit of individual size. 9. All the other vital phenomena which are to be seen in some of the chromacea can also be explained by Especially noteworthy in regard to the physiological character of these lowest organisms are their bionomic peculiarities, especially the indifference to external influences, higher and lower temperatures, etc. Many of the chromacea live in hot springs, with a temperature of fifty to eighty degrees centigrade, in which no other organism is found. Other species may remain for a long time frozen in ice, and resume their vital activity as soon as it thaws. Many chromacea may be completely dried up, and then resume their life if put in water after several years. Next in order to the chromacea we have the bacteria, the remarkable little organisms which have been well known in the last few decades as the causes of fatal diseases, and the agents of fermentation, putrefaction, etc. The special science which is concerned with them—modern bacteriology—has attained so important a position in a short period—especially as regards practical and theoretical medicine—that it is now represented by separate chairs at most of the universities. We may admire the penetration and the perseverance with which scientists have succeeded, with the aid of the best modern microscopes and methods of preparation and coloring, in making so close a study of the organism of the bacteria, determining their physiological properties, and explaining their great importance for organic life by careful experiments and methods of culture. The bionomic or economic position of the bacteria in nature's household has thus secured for these tiny organisms the greatest scientific and practical interest. However, we find that certain general views have been maintained by specialists in bacteriology up to our own time which are in curious contrast with these brilliant results. The biologist who studies the systematic The individual organisms of the simplest kind, which bacteriologists call "bacteria-cells," are not real nucleated cells. That is the clear negative result of a number of most careful investigations which have been made up to date with the object of finding a nucleus in the plasma-body of the bacteria. Among recent exact investigations we must especially note those of the botanist Reinke, of Kiel, who sought in vain to detect a nucleus in one of the largest and most easily studied genera of the bacteria, the beggiatoa, using every modern technical aid. His conviction that this important cell-structure is really lacking is the more valuable, as it is very prejudicial to his own theory of "dominants." Other scientists (especially Schaudinn) have recently claimed, as equivalent to a nucleus in some of the larger bacteria, a number of very small granules, which are irregularly distributed in the plasm, and are strongly tinted under certain coloring processes. But even if the chemical identity of these substances which take the same color were proved—which is certainly not the case—and even if the appearance of scattered nuclein-granules in the plasm could be regarded as a preliminary to, or a beginning of, the differentiation of an individual, Nor is this any more proved from the circumstance that in some bacteria (not all) we find a severance of the plasm into an inner and outer layer, or a frothy structure with vacuole-formation, or a special sharply outlined membrane on the plastid. Many bacteria (but not all) have such a membrane, like the nearly related chromacea, and also the secretion of a gelatine envelope. Both classes have also in common an exclusively monogenetic reproduction. The bacteria multiply, like the chromacea, by simple segmentation; as soon as the structureless plasma-granule has reached a certain size by simple growth, it is constricted and splits into two halves. In the long-bodied bacteria (the rod-shaped bacilli) the constriction always goes through the middle of the long axis, and is, therefore, simple transverse cleavage. Many bacteria have also been said to multiply by the formation of spores. But these so-called "spores" are really permanent quiescent forms (without any multiplication of individuals); the central part of the plastid (endoplasm) condenses, separates from the peripheral part (exoplasm), and undergoes a chemical change which makes it very indifferent to external influences (such as a high temperature). The great majority of the bacteria differ so little morphologically from the chromacea that we can only distinguish these two classes of monera by the difference in their metabolism. The chromacea, as protophyta, are plasmodomous. They form new plasm by synthesis and reduction from simple inorganic compounds—water, carbonic acid, ammonia, nitric acid, etc. But the bacteria, as protozoa, are plasmophagous. They cannot, as a rule, form new plasm, but have to take it from other organisms (as parasites, saprophytes, etc.); they decompose it by analysis and oxydation. Hence the Hence the affinity between the plasmodomous chromacea and plasmophagous bacteria is so close that it is impossible to give a single safe criterion that will effectually separate the two classes. Many botanists accordingly combine both groups in a single class with the name of schizophyta, and within this distinguish as "orders" the blue-green chromacea as schizophycÆ (cleavage-algÆ) and the colorless bacteria as schizomycetes (cleavage-fungi). However, we must not take this division too rigidly; and the absolute lack of a nucleus and tissue-formation separates the chromacea just as widely from the multicellular tissue-forming algÆ as the bacteria from the fungi. The simple multiplication by the halving of the cell, which is expressed in the name "cleavage-plants" (schizophyta), is also found in many other protists. The number of forms that can be distinguished as species in the technical sense is very great in the case of the bacteria, in spite of the extreme simplicity of their outward appearance; many biologists speak of several hundred, and even of more than a thousand, species. But when we look solely to the outer form of the living Since, then, neither the simple outer form of the bacterium-cytodes nor their homogeneous internal structure provides a satisfactory ground for the systematic distinction of the numerous species, their physiological properties are generally used for the purpose, especially their different behavior towards organic foods (albumin, gelatine, etc.), their chemical actions, and the various effects of poisoning and decomposition which they produce in the living organism. No bacteriologist now doubts that all the vital activities of the bacteria are of a chemical nature, and precisely on this account these microbes are of extreme importance. When we bear in mind how complicated are the relations of the various species of bacteria to the tissues of the human body, in which they cause the diseases of typhus, hypochondriasis, cholera, and tuberculosis, we are bound to admit that the real cause of these maladies must be sought in the peculiar molecular structure of the bacterium-plasm, or the particular arrangement of its molecules and the innumerable atoms (more than a thousand) In thus declaring the action of bacteria to be purely chemical and analogous to that of well-known inorganic poisons, I would particularly point out that this very justifiable statement is a pure hypothesis; it is an excellent illustration of the fact that we cannot get on in the explanation of the most important natural phenomena without hypotheses. We can see nothing whatever of the chemical molecular structure of the plasm, even under the highest power of the microscope; it lies far below the limit of microscopic perception. Nevertheless, no expert scientist has the slightest doubt of its existence, or that the complicated movements of the sensitive atoms and the molecules and groups of molecules they make up are the causes of the vast changes which these tiny organisms effect in the tissues of the human and the higher animal body. Moreover, the distinction of the many species of bacteria is of interest in connection with the general question of the nature and constancy of a species. Whereas formerly in biological classification only definite morphological characters, or definable differences in outer form or inner structure, were regarded as of any moment in the distinction of species, here, in view of the vagueness or total lack of these characters, we have to look mainly to the physiological properties, and these are based on the chemical differences in their hypothetical molecular structure. But even these are not absolutely As the bacteria are still often described as "cleavage-fungi" and classified along with the real fungi, we must particularly point out the wide gulf that separates the two groups. The real fungi (or mycetes) are metaphyta, their multicellular body (thallus) forming a very characteristic sort of tissue, the mycelium; this is composed of a number of interlaced and interwoven threads (or hyphens). Each fungus-thread consists of a row of lengthened cells, which have a thin membrane and enclose a number of small nuclei in the colorless plasm. Moreover, the two sub-classes of the real fungi, the ascomycetes and basimycetes, form peculiar fruit-bodies which generate spores (ascodia and basidia). There is no trace whatever of these real characteristics of the true fungus in the bacteria. Nor is it less incorrect to class them with the fungilli, the so-called unicellular fungi or phycomycetes (ovomycetes and zygomycetes); these form a special class of protists which has the closest affinity to the gregarinÆ. Like the closely related chromacea, many of the bacteria show a marked tendency to form communities or cell-colonies. These cell-communities arise, as elsewhere, from the fact that the individuals, which multiply The two classes of bacteria and chromacea seem, in the present condition of our knowledge, on account of their simple organization, to be the simplest of all living things, real monera, or organisms without organs. Hence we have to put them at the lowest stage of the protist kingdom, and must regard the difference between them and the most highly differentiated unicellular beings (such as the radiolaria, ciliated infusoria, diatomes, or siphonea) as no smaller than the difference (in the realm of the histona) between a lower polyp (hydra) and a vertebrate, or between a simple alga (ulva) and a palm. But if the kingdom of the protists is badly divided, on the older rule, into a plant kingdom and an animal kingdom, the only discriminating mark we have left is the difference in metabolism; in that case we have to include the plasmophagous bacteria in the animal kingdom (as Ehrenberg did in 1838) and the plasmodomous chromacea in the plant kingdom. The remarkable class of the flagellata, which includes ciliated unicellulars of both groups, contains several forms which are only distinguished from the typical bacterium by the possession of a nucleus. If it is true that in some of The monera which I described in 1866, and on which I based the theory of the monera in my monograph, belong to a different division of the protists from the classes of bacteria and chromacea. These are the forms which I described as protamoeba, protogenes, protomyxa, etc. Their naked mobile plasma-bodies thrust out pseudopodia, or variable "false feet," from their surface, like the (nucleated) real rhizopods (=sarcodinÆ); but they differ essentially from the latter in the absence of a nucleus. Afterwards (in my Systematic Phytogeny) I proposed to separate these unnucleated rhizopods from the others, giving the name of lobomonera (protamoeba) to the amoeba-like monera with flap-shaped feet, and the name of rhizomonera (protomyxa, pontomyxa, biomyxa, arachnula, etc.) to the gromia-like, root-feet forming monera. However, of late years, real nuclei have been detected in each of these large monera, and so they have been proved to be true cells. This discovery was made possible by the improved modern methods of coloring the nucleus which I had not the use of thirty years ago in my first observations. On the strength of these recent discoveries many scientists claim that all the monera I described are true cells, and must have nuclei. This baseless assertion is much employed by the opponents of the theory of evolution in order to deny the existence of the monera altogether. Of the genus of monera which we call protamoeba I have given an illustration in my History of Creation (tenth edition), which has been frequently reproduced. Several species (at least two or three) of this genus still exist, and are distinguished by the shape of their flap-formation and their method of motion. They resemble The large marine form of rhizomoneron to which Huxley gave the name of bathybius Haeckelii in 1868, and as to the real nature of which many opinions have been expressed, seems, according to the latest investigation, not to have the significance ascribed to it. However, the much-discussed question of the bathybius is superfluous as far as our monera theory and the associated hypothesis of archigony (chapter xv.) are concerned, since we have now a better knowledge of the much more important monera-forms of the chromacea and bacteria. In the case of some of the protists I described in my Monograph on the Monera, it is at present doubtful whether their plasma-body contains a nucleus or not, At the close of these observations on the monera I will briefly recapitulate the weighty inferences which we can deduce from their simple organization. They serve as a solid foundation for the chief theses of our monistic biology; and they are inconsistent with the dualistic views of modern vitalists. In the first place, I emphasize the fact that the structureless plasm-body of the simple monera has no sort of organization and no composition from dissimilar parts co-operating for definite vital aims. Reinke's conscious "dominant"—as well as Weismann's mechanical "determinants"—have nothing to do here. The whole vital activity of the simplest monera, especially of the chromacea, is confined to their metabolism, and is therefore a purely chemical process, that may be compared to the catalysis of inorganic compounds. The simple formation of individuals in this primitive living matter is merely a question of the cleavage of plasma globules of a certain size (chroococcus); X |