Let us now recapitulate the ancestral chain of man, as it is set forth in the accompanying diagram (p. 1. The most remote ancestors of all living organisms were living beings of the simplest imaginable kind, organisms without organs, I assume that the first Monera owe their existence to spontaneous creation out of so-called anorganic combinations, consisting of carbon, hydrogen, oxygen, and nitrogen. An explanation of this hypothesis I have given in my 'Generelle Morphologie.' The Monera probably arose early in the Laurentian period. The oldest are the Phytomonera, with vegetable metabolism. They possessed the power (characteristic of plants) of forming albumin by synthesis from carbon, water, and ammonia. From some of these plasma-forming Monera arose the plasmophagous Zoomonera with animal metabolism, living directly upon the produce of 2. The second stage is that of the simple and single cell, a bit of protoplasm with a nucleus. Such unicellular organisms are still very common. The AmoebÆ are their simplest representatives. The morphological value of such beings is the same as that of the egg of any animal. The naked egg cells of the sponges creep about in an amoeboid fashion, scarcely distinguishable from Amoeba. The same remark applies to the egg-cell of man himself in its early stages before it is enclosed in a membrane. The first unicellular organisms arose from Monera through differentiation of the inner nucleus from the outer protoplasm. 3. Repeated division of the unicellular organism produces the Synamoebium, or community of AmoebÆ, provided the divisional products, or new generations of the original cell, do not scatter, but remain 4. The morula of most animals further changes into a Blastula, a hollow ball filled with fluid, the wall being formed by a single layer of cells, the blastoderm or germinal layer. This modification is brought about by the action of the cells—they conveying nourishing fluid into the interior of the whole cell colony and thereby being themselves forced towards the surface. The Blastula of most Invertebrata, and even that of Amphioxus, is possessed of fine ciliÆ, or hair-like processes, the vibrating motion of which causes the whole organism to rotate and advance in 5. The Blastula of most animals assumes a new larval form called Gastrula, in which the essential characteristics are that a portion of the blastoderm by invagination converts the Blastula into a cup with double walls, enclosing a new cavity, the primitive gut. This invagination or bulging-in obliterates the original inner cavity of the Blastula. The outer layer of the Gastrula is the ectoderm, the inner the endoderm; both pass into each other at the blastoporus, or opening of the gut cavity. The Gastrula is a stage in the embryonic development of the various great groups of animals, and some such primitive form as ancestral to all Metazoa is thus indicated. This hypothetical GastrÆa is still very essentially represented by the lower Coelenterates—e.g., Olynthus, Hydra. 6. The sixth stage—that of the Platodes, 7. The next higher stage is represented by such low animals as the Gastrotricha—e.g., ChÆtonotus among the Rotatoria, which differ from the rhabdocoelous Turbellarians chiefly by the formation of a vent and the beginnings of a coelom, or cavity, between gut and body wall. The addition of a primitive vascular system and a pair of nephridia, or excretory organs, is first met with in the Nemertines. 8. These, together with the Enteropneusta (Balanoglossus), are comprised under the name of Frontonia, or Rhynchelminthes, and form the highest group of the Vermalia. The Enteropneusta especially fix our attention, because they alone, although essentially 'worms,' exhibit certain characteristics which make it possible to bridge over the gulf which still separates the Invertebrata from the vertebrate phylum. The anterior portion of the gut is transformed into a breathing apparatus—hence Gegenbaur's term of Enteropneusta, or Gut-breathers. Moreover, Balanoglossus and Cephalodiscus possess another modification of the gut—namely, a peculiar diverticulum, which, in the present state of our knowledge, may be looked upon as the forerunner of the chorda dorsalis. 9. Stage of Prochordonia, as indicated by the larval form, called Chordula, which is common to the Tunicata and all the Vertebrata. These two groups possess three most important features: (a) A chorda dorsalis, a stiff rod lying in the long axis of the body, dorsally from the gut and below the central nervous system. This latter, for the first time in the animal kingdom, appears in
10. Stage of the Acrania, represented by Amphioxus. The early development of this little marine creature agrees closely with that of the Tunicates; but one important feature is added to its organization—namely, metamerism, segmentally arranged mesoderm. Amphioxus still possesses neither skull nor vertebrÆ, neither ribs nor jaws, and no limbs. But it is a member of the Vertebrata if we define these as follows: Bilateral symmetrical animals with segmentally arranged mesoderm, with a chorda dorsalis between the 11. Stage of Cyclostomata. This now 12. The Elasmobranchi (sharks and skates), with their immediate forerunners, the Acanthodi of the Devonian and Carboniferous age, are the first typical fishes. That they existed as far back as the Silurian age is proved by many enamelled spines of the dermal armour, chiefly from the dorsal fins. This higher stage is characterized by the possession of typical jaws, by visceral or gill-bearing arches, and by two pairs of limbs. None of the Elasmobranchs, fossil or recent, stands in the direct ancestral line; but they are the lowest Gnathostomata, jaw-and-limb-possessing creatures, known. 13. Closely connected with the Elasmobranchs in a wider sense are the Crossopterygii, which begin in the Devonian age as a large group, but have left only two survivals, the African Polypterus and Calamoichthys. They are possessed of dermal bones and other ossifications, and are characterized by 14. This is shown by their intimate relation to the Dipnoi, which are still represented by the Australian, African, and South American mud-fishes: Ceratodus, Protopterus, and Lepidosiren. The genus Ceratodus existed in the Upper Trias, whence various other unmistakably dipnoous forms lead down through the Carboniferous (e.g., Ctenodus) to the Devonian strata—e.g., Dipterus. They 15. Amphibia. The earliest amphibian fossils occur in the Carboniferous strata. They alone—the Stegocephali or Phractamphibia—stand in the ancestral line, while the Lissamphibia, to which all the recent forms belong, are side-branches. The Stegocephali are the earliest Tetrapoda, the archipterygial paired fins having been transformed into the pentadactyle fore and hind limbs, which are so characteristic of all the higher Vertebrata. The cranium is roofed over by dermal bones, of which, besides others, supra-occipitals, supra-orbitals, and supra-temporals are always present. The lowest members In the very important Temnospondyli, a subgroup of the Stegocephali—e.g., Trimerorhachis of the Lower Red Sandstone or Lower Permian—the component cartilaginous or bony units which compose the vertebrÆ still remained in a separate, unfused state, showing at the same time an arrangement whence has arisen that which is typical of the Amniota. The same applies to the limbs and their girdles. In fact, the Stegocephali, taken as a whole, lead imperceptibly to the Proreptilia. 16. Proreptilia are represented by the Permian genera Eryops and Cricotus. Until quite recently these and many other fossils from the Carboniferous strata were looked upon as Amphibia, while many undoubted The nearest living representative of these extinct Proreptilia is the New Zealand reptile Hatteria, or Sphenodon, close relations of which are known from the Upper Trias; while others—e.g., PalÆohatteria—have been discovered in the Permian. Anyhow, Sphenodon is the reptile which stands nearest to the main stem of our ancestry. The most important characteristics of the Reptilia, which mark a higher stage or level, are (1) The entire suppression of the gills—although during the embryonic development the gill-clefts still appear in all reptiles, birds, and mammals; (2) The development of an amnion and an allantois, both for the embryonic life only, but so characteristic that all these animals are comprised under the name of Amniota; (3) The articulation of the skull with the first neck vertebrÆ by well-developed condyles, either single (really triple) or 17. Between the Proreptilia and the Mammalia, which latter occur in the Upper Triassic epoch, we have necessarily to intercalate a group of very low reptiles, which are still so generalized that their descendants could branch off either into the Reptilia proper or into the Mammalia. The changes concerned chiefly the brain and the heart; of the skele 18. Stage of the Promammalia, or Prototheria. The only surviving members are the famous duck-bill, Ornithorhynchus, and the spiny ant-eaters, Echidna and Proechidna, of the Australian region. These few genera, however, differ so much from one another in various important respects that they cannot but be remnants of an originally much larger group. Indeed, many fossils from the Upper 19. Stage of Metatheria, or Marsupialia, are direct descendants of Prototheria; but they show higher development by the reduction of the coracoid bones and the interclavicle. The original cloaca is divided into a rectal chamber and a uro-genital sinus, completely separated, at least in the males; they are viviparous; the young are received into a permanent marsupium, in the walls of which are formed typical milk glands and nipples, but the embryo is still devoid of a placenta, although some recent marsupials show indications of such an organ. The corpus callosum in the brain is still very weak. Most of the marsupials are extinct. They occur from the Upper Trias onwards, and had in the Jurassic epoch attained a wide distribution both in Europe and in America. 20. Stage of Prochoriata, or early Placentalia: a further development of the Metatheria by the development of a placenta, loss of the marsupium and the marsupial bones, complete division by the perineum of the anal and uro-genital chambers, stronger development of the corpus callosum, or chief commissure of the two hemispheres of the brain. Placentalia must have come into existence during the Cretaceous epoch. Up to that time all the Mammalia seem to have belonged to either Prototheria or to Metatheria; but in the early Eocene we can distinguish the main groups of Placentalia—namely, (1) Trogontia, now represented by the rodents; (2) Edentata, or sloths, armadilloes, etc.; (3) Carnassia, or Insectivora and Carnivora; (4) Chiroptera, or bats; 21. Stage of Lemures, or ProsimiÆ, comprising the older members of the Primates, consequently approaching most nearly to the Lemuravida. The limbs are modified into pentadactyle hands and feet of the arboreal type, and are protected by nails. The dentition is of the frugivorous or omnivorous type, with an originally complete series of teeth, with milk teeth and with permanent. The orbit is surrounded by a complete bony ring, posteriorly by a fronto-jugal arch, but still widely communicating with the temporal fossa. The placenta is diffuse and non-deciduous. ANCESTRAL TREE OF THE MAMMALIA.
Names in brackets indicate extinct groups. 22. Stage of SimiÆ. Orbit completely separated from the temporal fossa by an inward extension of the frontal and malar bones meeting the alisphenoid. Placenta consolidated into a disc, and with a maternal deciduous portion. MammÆ pectoral only. The dental formula is 2.1.3.3. All the fingers and toes are protected by flat nails. The tail is long. The American prehensile-tailed monkeys are a lower side-branch. 23. Stage of CatarrhinÆ CercopithecidÆ. The dental formula is 2.1.2.3, owing to the loss of one pair of premolars in each jaw. The frontal and alisphenoid bones are in contact, separating the parietal from the malar bone; this feature is correlated with the enlarged brain. The internarial septum 24. Stage of CatarrhinÆ AnthropoidÆ, or Apes. Now represented by the large apes—namely, the Hylobates or gibbon of South-Eastern Asia, Simia satyrus, the orang-utan of Sumatra and Borneo, Troglodytes gorilla, T. niger and T. calvus, the gorilla and the chimpanzees from Western Equatorial Africa. Of fossils are to be mentioned Pliopithecus and Dryopithecus from European Miocene, and Troglodytes sivalensis from the Pliocene of the Punjaub. The tail is reduced to a few caudal vertebrÆ, which are transformed into a coccyx, not visible externally; but in the embryos of apes and man the tail is still a conspicuous feature. The walk is semi 25. Stage of Pithecanthropi. Hitherto the only known representative is Pithecanthropus erectus, from the Upper Pliocene of Java. In adaptation to a more erect gait, the legs have become stronger and the hind-hand has been turned into a flat-soled walking 'foot.' The brain is considerably enlarged. Presumably it is still devoid of so-called articulate speech; this is indicated by the fact that children have to learn the language of their parents, and by the circumstance that comparative philology declares it impossible to reduce the chief human languages to anything like one common origin. 26. Man. Known with certainty to have Whilst we have to admit that there are great defects in the older (invertebrate) portion of our pedigree, we have all the more reason to be satisfied with the positive results of our investigation of the more recent (vertebrate) part of it. All modern researches have confirmed the views of Lamarck, Darwin, and Huxley, and they allow of no doubt that the nearest vertebrate ancestors of mankind were a series of Tertiary Primates. Particularly valuable are the admirable attempts of the two zoologists, Paul and Fritz Sarasin, The direct descent of man from some extinct ape-like form is now beyond doubt, and admits of being traced much more clearly than the origin of many another mammalian order. The pedigrees of the Elephants, the Sirenia, the Cetacea, and, above all, of the Edentata, for example, are much more obscure and difficult to explain. In many parts of their organization—for example, in the number and structure of his five digits and toes—man and monkeys have remained much more primitive than most of the Ungulata. The immense significance of this positive knowledge of the origin of man from some Primate does not require to be enforced. Its bearing upon the highest questions of philosophy cannot be exaggerated. Among modern philosophers no one has perceived this more Three times I had the good fortune to visit Darwin at Down, and on each occasion we discussed this fundamental question in complete harmony. I agree with Spencer in the conviction that progressive heredity is an indispensable factor in every true monistic theory of Evolution, and that it is one of its most important elements. If one denies with Weismann the heredity of acquired characters, then it becomes necessary to have recourse to purely mystical qualities of germ-plasm. I am of the opinion of Spencer, that in that case it would be better to accept a mysterious creation of all the various species as described in the Mosaic account. If we look at the results of modern anthropogeny from the highest point of view, and compare all its empirical arguments, we are justified in affirming that the descent of man from an extinct Tertiary series of Primates is not a vague hypothesis, but an historical fact. Of course, this fact cannot be proved exactly. We cannot explain all the innumerable physical and chemical processes, all the physiological mutations, which have led during untold millions of years from the simplest Monera and from the unicellular Protista upwards to the chimpanzee and to man. But the same consideration applies to all historical facts. We all believe that Aristotle, CÆsar, and King Alfred did live; but it is impossible to give a proof within the meaning of modern exact science. We believe firmly in the former existence of these and other great heroes of thought, because we know well the works they have left behind them, and we see their effects in the history of human culture. These indirect arguments do not furnish stronger evidence than those of our history as vertebrates. We know of many Jurassic mammals only a single bone, the under jaw. We all believe that these mammals possessed also an upper jaw, a skull, and other bones. But Looking forward to the twentieth century, I am convinced that it will universally accept our theory of descent, and that future science will regard it as the greatest advance made in our time. I have no doubt that the influence of the study of anthropogeny upon all other branches of science will be fruitful and auspicious. The work done in the present century by Lamarck and Darwin will in all future times be considered one of the greatest conquests made by thinking man. EVOLUTIONARY STAGES OF THE PRINCIPAL GROUPS OF VERTEBRATA.
|