THE CONTROVERSY OVER THE SOUL THE IDEAS OF IMMORTALITY AND GOD EXPLANATION OF PLATE III EMBRYOS OF THREE MAMMALS AT THREE CORRESPONDING STAGES OF DEVELOPMENT The embryos of man (M), the anthropoid ape (gibbon, G), and the bat (rhinolophus, B) can hardly be distinguished in the earlier stage (the upper row), although the five cerebral vesicles, the gill-clefts, and the three higher sense-organs are already visible. On the curved dorsal surface we see the sections of the primitive vertebrÆ. Even later, when the two pairs of limbs have appeared in the form of roundish fins (the middle row), the differences are not great. It is not until a further development of the limbs and head has taken place (lowest row) that the characteristic forms are clearly seen. It is particularly notable that the primitive brain, the organ of the mind, with its five cerebral vesicles, is the same in all. PLATE III. EMBRYOS OF THREE MAMMALS CHAPTER III THE CONTROVERSY OVER THE SOUL THE IDEAS OF IMMORTALITY AND GOD Though it was my original intention to deliver only two lectures, I have been moved by several reasons to add a supplementary one. In the first place, I notice with regret that I have been compelled by pressure of time to leave untouched in my earlier lectures, or to treat very inadequately, several important points in my theme; there is, in particular, the very important question of the nature of the soul. In the second place, I have been convinced by the many contradictory press-notices during the last few days that many of my incomplete observations have been misunderstood or misinterpreted. And, thirdly, it seemed advisable to give a brief and clear summary of the whole subject in this farewell lecture, to take a short survey of the past, present, and future of the theory of evolution, and especially its relation to the three great questions of personal immortality, the freedom of the will, and the personality of God. I must claim the reader's patience and indulgence even to a greater extent than in the previous chapters, as the subject is one of the most difficult and obscure In the previous chapters I have tried to give a general idea of the present state of the theory of evolution and its victorious struggle with the older legend of creation. We have seen that even the most advanced organism, man, was not brought into being by a creative act, but gradually developed from a long series of mammal ancestors. We also saw that the most man-like mammals, the anthropoid apes, have substantially the same structure as man, and that the evolution of the latter from the former can now be regarded as a fully established hypothesis, or, rather, an historical fact. But in this study we had in view mainly the structure of the body and its various organs. We touched very briefly on the evolution of the human mind, or the immaterial soul that dwells in the body for a time, according to a venerable tradition. To-day we turn chiefly to the development of the soul, and consider whether man's mental development is controlled by the same natural laws as that of his body, and whether it also is inseparably bound up with that of the rest of the mammals. At the very threshold of this difficult province we This metaphysical psychology, which ruled alone for a considerable period, began to be opposed in the eighteenth, and still more in the nineteenth, century by comparative psychology. An impartial comparison of the psychic processes in the higher and lower animals proved that there were numerous transitions and gradations. A long series of intermediate stages connects the psychic life of the higher animals with that of man on the one side, and that of the lower animals on the other. There was no such thing as a sharp dividing line, as Descartes supposed. But the greatest blow was dealt at the predominant metaphysical conception of the life of the soul thirty years ago by the new methods of psychophysics. By means of a series of able experiments the physiologists, Theodor Fechner and Ernst Heinrich Weber of Leipsic, showed Thus physiological psychology was raised by psychophysics to the rank of a physical and, in principle, exact science. But it had already obtained solid foundations in other provinces of biology. Comparative psychology had traced connectedly the long gradation from man to the higher animals, from these to the lower, and so on down to the very lowest. At the lowest stage it found those remarkable beings, invisible with the naked eye, that were discovered in stagnant water everywhere after the invention of the microscope (in the second half of the seventeenth century) and called "infusoria." They were first accurately described and classified by Gottfried Ehrenberg, the famous Berlin microscopist. In 1838 he published a large and beautiful work, illustrating on 64 folio pages the whole realm of microscopic life; and this is still the base of all studies of the protists. Ehrenberg was a very ardent and imaginative observer, and succeeded in communicating his zeal for the study of microscopic organisms to his pupils. I still recall with pleasure the The way in which Ehrenberg explained to us the structure and the vital movements of his infusoria was very curious. Misled by the comparison of the real infusoria with the microscopic but highly organised rotifers, he had formed the idea that all animals are alike advanced in organisation, and had indicated this erroneous theory in the very title of his work: The Infusoria as Perfect Organisms: a Glance at the Deeper Life of Organic Nature. He thought he could detect in the simplest infusoria the same distinct organs as in the higher animals—stomach, heart, ovaries, kidneys, muscles, and nerves—and he interpreted their psychic life on the same peculiar principle of equally advanced organisation. Ehrenberg's theory of life was entirely wrong, and was radically destroyed in the hour of its birth (1838) by the cell-theory which was then formulated, and to which he never became reconciled. Once Matthias Schleiden had shown the composition of all the plants, I was led to make a very close study of these unicellular protists and their primitive cell-soul through my research on the radiolaria, a very remarkable class of microscopic organisms that float in the sea. I was engaged most of my time for more than thirty of the best years of my life (1856-87) in studying them in every aspect, and if I came eventually to adopt a strictly Monistic attitude on all the great questions of biology, I owe it for the most part to my innumerable observations I had undertaken the study of the radiolaria as a kind of souvenir of my great master, Johannes MÜller. He had loved to study these animals (of which only a few species were discovered for the first time in the year of my birth, 1834) in the last years of his life, and had in 1855 set up the special group of the rhizopods (protozoa). His last work, which appeared shortly after his death (1858), and contained a description of 50 species of radiolaria, went with me to the Mediterranean when I made my first long voyage in the summer of 1859. I was so fortunate as to discover about 150 new species of radiolaria at Messina, and based on these my first monograph of this very instructive class of protists (1862). I had no suspicion at that time that fifteen years afterwards the deep-sea finds of the famous Challenger expedition would bring to light an incalculable wealth of these remarkable animals. In my second monograph on them (1887), I was able to describe more than 4,000 different species of radiolaria, and illustrate most of them on 140 plates. I have given a selection of the prettiest forms on ten plates of my Art-forms in Nature. I have not space here to go into the forms and vital movements of the radiolaria, of the general import of which my friend, Wilhelm BÖlsche, has given a very attractive account in his various popular works. I must What is this plasm? What is this mysterious "living substance" that we find everywhere as the material foundation of the "wonders of life"? Plasm, or protoplasm, is, as Huxley rightly said thirty years ago, "the physical basis of organic life"; to speak more precisely, it is a chemical compound of carbon that alone accomplishes the various processes of life. In its simplest form the living cell is merely a soft globule of plasm, containing a firmer nucleus. The inner nuclear matter (called caryoplasm) differs somewhat in chemical composition from the outer cellular matter (or cytoplasm); but both substances are composed of carbon, oxygen, hydrogen, nitrogen, and sulphur; both belong to the remarkable group of the albuminates, the nitrogenous carbonates that are distinguished for the extraordinary size of their molecules and the unstable arrangement of the numerous atoms (more than a thousand) that compose them. There are, however, still simpler organisms in which the nucleus and the body of the cell have not yet been differentiated. These are the monera, the whole living body of which is merely a homogeneous particle of plasm (the chromacea and bacteria). The well-known bacteria which now play so important a part as the causes of most dangerous infectious We see this still more clearly in our radiolaria, and at the same time they show us unmistakably that even the psychic activity is such a physico-chemical process. All the different functions of their cell-soul, the sense-perception of stimuli, the movement of their plasm, their nutrition, growth, and reproduction, are determined by the particular chemical composition of each of the 4,000 species; and they have all descended, in virtue of adaptation and heredity, from the common stem-form of the naked, round parent-radiolarian (Actissa). We may instance, as a peculiarly interesting fact in the psychic life of the unicellular radiolaria, the extraordinary power of memory in them. The relative constancy with which the 4,000 species transmit the orderly and often very complex form of their protective flinty structure from generation to generation can only be explained by admitting in the builders, the invisible plasma-molecules of the pseudopodia, a fine "plastic sense of distance," and a tenacious recollection of the architectural power of their fathers. The fine, formless plasma-threads are always building afresh the same delicate flinty shells with an artistic trellis-work, and with protective radiating needles and supports always at the same points of their surface. The physiologist, Ewald From the cell-soul and its memory in the radiolaria and other unicellular protists, we pass directly to the similar phenomenon in the ovum, the unicellular starting-point of the individual life, from which the complex multicellular frame of all the histona, or tissue-forming animals and plants, is developed. Even the human organism is at first a simple nucleated globule of plasm, about 1 125 inch in diameter, barely visible to the naked eye as a tiny point. This stem-cell (cytula) is formed at the moment when the ovum is fertilised, or mingled with the small male spermatozoon. The ovum transmits to the child by heredity the personal traits of the mother, the sperm-cell those of the father; and this hereditary transmission extends to the finest characteristics of the soul as well as of the body. The modern research as to heredity, which occupies so much space now in biological literature, but was only started by Darwin in 1859, is directed immediately to the visible material processes of impregnation. The very interesting and important phenomena of impregnation have only been known to us in detail for thirty years. It has been shown conclusively, after a number of delicate investigations, that the individual development of the embryo from the stem-cell or fertilised ovum is controlled by the same laws in all cases. The stem-cell divides and subdivides rapidly into a number of simple cells. From these a few simple organs, the germinal layers, are formed at first; later on the various organs, of which there is no trace in the early embryo, are built up out of these. The biogenetic law teaches us how, in this development, the original features of the ancestral history are reproduced or recapitulated in the embryonic processes; and these facts in turn can only be explained by the unconscious memory of the plasm, the "mneme of the living substance" in the germ-cells, and especially in their nuclei. One important result of these modern discoveries was the prominence given to the fact that the personal soul has a beginning of existence, and that we can determine the precise moment in which this takes place; it is when the parent cells, the ovum and spermatozoon, coalesce. Hence what we call the soul of man or the animal has not pre-existed, but begins its career at the moment of impregnation; it is bound up with the chemical constitution of the plasm, which is the material vehicle of heredity in the nucleus of the maternal ovum and the paternal spermatozoon. One cannot see how a being that thus has a beginning of existence can afterwards prove to be "immortal." Further, a candid examination of the simple cell-soul in the unicellular infusoria, and of the dawn of the individual soul in the unicellular germ of man and the higher animals, proves at once that psychic action does not necessarily postulate a fully formed nervous system, as was previously believed. There is no such system in many of the lower animals, or any of the plants, yet we find psychic activities, especially sensation, irritability, and reflex action everywhere. All living plasm has a psychic life, and in this sense the psyche is a partial function of organic life generally. But the higher psychic functions, particularly the phenomena of consciousness, only appear gradually in the higher animals, in which (in consequence of a division of labour among the organs) the nervous system has assumed these functions. It is particularly interesting to glance at the central nervous system of the vertebrates, the great stem of which we regard ourselves as the crowning point. Here again the anatomical and embryological facts speak a clear and unambiguous language. In all vertebrates, from the lowest fishes up to man, the psychic organ makes its appearance in the embryo in the same form—a simple cylindrical tube on the dorsal side of the embryonic body, in the middle line. The anterior section of this "medullary tube" expands into a club-shaped vesicle, which is the beginning of the brain; the posterior and thinner section becomes the spinal cord. The cerebral vesicle divides, by transverse constrictions, into three, then four, and eventually five vesicles. The most important of these is the first, the cerebrum, the We have learned a good deal about the special significance of the various parts of the brain, as organs of specific functions, by the progress of the modern science of experimental physiology. Careful experiments by Goltz, Munk, Bernard, and many other physiologists, We find another series of strong arguments in favour of our Monistic psychology in the individual development of the soul in the child and the young animal. We know that the new-born child has as yet no consciousness, no intelligence, no independent judgment and thought. We follow the gradual development of these higher faculties step by step in the first years of life, in strict proportion to the anatomical development of the cortex with which they are bound up. The inquiries into the child-soul which Wilhelm Preyer began in Jena twenty-five years ago, his careful "observations of the mental development of man in his early years," and the supplementary research of several more recent physiologists, have shown, from the ontogenetic side, that the soul is not a special immaterial entity, but the sum-total of a number of connected functions of the brain. When the brain dies, the soul comes to an end. We have further proof in the stem-history of the soul, which we gather from the comparative psychology of the lower and higher mammals, and of savage and civilised races. Modern ethnography shows us in actual existence the various stages through which the mind rose to its present height. The most primitive races, such as the Veddahs of Ceylon, or the Australian natives, are very little above the mental life of the anthropoid apes. From the higher savages we pass by a complete gradation of stages to the most civilised That a large number of educated people still cling to the dogma of personal immortality in spite of these luminous proofs, is owing to the great power of conservative tradition and the evil methods of instruction that stamp these untenable dogmas deep on the growing mind in early years. It is for that very reason that the Churches strive to keep the schools under their power at any cost; they can control and exploit the adults at will, if independent thought and judgment have been stifled in the earlier years. This brings us to the interesting question: What is the position of the "ecclesiastical evolution" of the Jesuits (the "latest course of Darwinism"), as regards this great question of the soul? Man is, according to Wasmann, the image of God and a unique, immaterial being, differing from all other animals in the possession of an immortal soul, and therefore having a totally different origin from them. Man's immortal soul is, according to this Jesuit sophistry, "spiritual and sensitive," while the animal soul is sensitive only. God has implanted his own spirit in man, and associated When we look at the matter impartially in the light of pure reason, the belief in immortality is wholly inconsistent with the facts of evolution and of physiology. The ontogenetic dogma of the older Church, that the soul is introduced into the soulless body at a particular moment of its embryonic development, is just as absurd as the phylogenetic dogma of the most modern Jesuits, that the Divine spirit was breathed into the frame of an anthropoid ape at a certain period (in the Tertiary period), and so converted it into an immortal soul. We may examine and test this belief as we will, we can find in it nothing but a piece of mystic superstition. It is maintained solely by the great power of tradition and We learn further, from the history of this dogma, that the belief in immortality did not find its way into science until a comparatively late date. It is not found in the great Monistic natural philosophers who, six centuries before the time of Christ, evinced a profound insight into the real nature of the world. It is not found in Democritus and Empedocles, in Seneca and Lucretius Carus. It is not found in the older Oriental religions, Buddhism, the ancient religion of the Chinese, or Confucianism; in fact, there is no question of individual persistence after death in the Pentateuch or the earlier books of the Old Testament (which were written before the Babylonian Exile). It was Plato and his pupil, Aristotle, that found a place for it in their dualistic metaphysics; and its agreement with the Christian and Mohammedan teaching secured for it a very widespread acceptance. Another psychological dogma, the belief in man's free-will, is equally inconsistent with the truth of evolution. Modern physiology shows clearly that the will is never really free in man or in the animal, but determined by the organisation of the brain; this in turn With the belief in the absolute freedom of the will and the personal immortality of the soul is associated, in the minds of many highly educated people, a third article of faith, the belief in a personal God. It is well known that this belief, often wrongly represented as an indispensable foundation of religion, assumes the most widely varied shapes. As a rule, however, it is an open or covert anthropomorphism. God is conceived as the "Supreme Being," but turns out, on closer examination, to be an idealised man. According to the Mosaic narrative, "God made man to his own image and likeness," but it is usually the reverse; "Man made God according to his own image and likeness." This idealised man becomes creator and architect and produces the world, forming the various species of plants and animals like a modeller, governing the world like a wise and all-powerful monarch, and, at the "Last Judgment," rewarding the good and punishing the wicked like a rigorous judge. The childish conceptions of this extramundane God, who is set over against the world as an independent being, the personal creator, maintainer, and ruler of all things, are quite incompatible Critical philosophy, moreover, long ago pronounced its doom. In the first place, the most famous critical thinker, Immanuel Kant, proved in his Critique of Pure Reason that absolute science affords no support to the three central dogmas of metaphysics, the personal God, the immortality of the soul, and the freedom of the will. It is true that he afterwards (in the course of his dualistic and dogmatic metamorphosis) taught that we must believe these three great mystic forces, and that they are indispensable postulates of practical reason; and that the latter must take precedence over pure reason. Modern German philosophy, which clamours for a "return to Kant," sees his chief distinction in this impossible reconciliation of polar contradictions. The Churches, and the ruling powers in alliance with them, accord a welcome to this diametrical contradiction, recognised by all candid readers of the KÖnigsberg philosopher, between the two reasons. They use the confusion that results for the purpose of putting the light of the creeds in the darkness of doubting reason, and imagine that they save religion in this way. Whilst we are engaged with the important subject of religion, we must refute the charge, often made, and renewed of recent years, that our Monistic philosophy and the theory of evolution that forms its chief foundation destroy religion. It is only opposed to It is also very regrettable that the increasing tendency to external show and festive parade at what is called "the new court" does grave injury to real and inner religion. We have a striking instance of this external religion in the new cathedral at Berlin, which many These observations on the more repellent characters of modern orthodoxy and piety may be taken as some reply to the sharp attacks to which I have been exposed for forty years, and which have lately been renewed with great violence. The spokesmen of Catholic and Evangelical beliefs, especially the Romanist Germania and the Lutheran Reichsbote, have vied with each other in deploring my lectures as "a desecration of this venerable hall," and in damning my theory of evolution—without, of course, making any attempt to repute its scientific truth. They have, in their Christian charity, thought fit to put sandwich-men at the doors of this room, to distribute scurrilous attacks on my person and my teaching to those who enter. They have made a generous use of the fanatical calumnies that the court As regards the relation of science to Christianity, I will only point out that it is quite irreconcilable with the mystic and supernatural Christian beliefs, but that it fully recognises the high ethical value of Christian morality. It is true that the highest commands of the Christian religion, especially those of sympathy and brotherly love, are not discoveries of its own; the golden rule was taught and practised centuries before the time of Christ. However, Christianity has the distinction of preaching and developing it with a fresh force. In its time it has had a beneficial influence on the In view of this broadening tendency in theology and philosophy at the beginning of the twentieth century, it is an unfortunate anachronism that the Ministers of Public Instruction of Prussia and Bavaria sail in the wake of the Catholic Church, and seek to instil the spirit of the Jesuits in both lower and higher education. It is only a few weeks since the Prussian Minister of Worship made a dangerous attempt to suppress academic freedom, the palladium of mental life in Germany. This increasing reaction recalls the sad days of the eighteenth and nineteenth centuries, when thousands of the finest citizens of Germany migrated to North America, in order to develop their mental powers in However, we must not take too seriously the anxiety that this increasing political and clerical reaction causes us. We must remember the vast resources of civilisation that are seen to-day in our enormous international intercourse, and must have confidence in the helpful exchange of ideas between east and west that is being effected daily by our means of transit. Even in Germany the darkness that now prevails will at length give place to the dazzling light of the sun. Nothing, in my opinion, will contribute more to that end than the unconditional victory of the idea of evolution. Beside the law of evolution, and closely connected with it, we have that great triumph of modern science, the law of substance—the law of the conservation of matter (Lavoisier, 1789), and of the conservation of energy (Robert Mayer, 1842). These two laws are irreconcilable with the three central dogmas of metaphysics, which so many educated people still regard as the most precious treasures of their spiritual life—the belief in a personal God, the Thus the noble warmth of art will remain, together with—not in opposition to, but in harmony with—the splendid light of science, one of the most precious possessions of the human mind. As Goethe said: "He who has science and art has religion; he who has not these two had better have religion." Our Monistic system, the "connecting link between religion and science," brings God and the world into unity in the sense that Goethe willed, the sense that Spinoza clearly Our Monistic god, the all-embracing essence of the world, the Nature-god of Spinoza and Goethe, is identical with the eternal, all-inspiring energy, and is one, in eternal and infinite substance, with space-filling matter. It "lives and moves in all things," as the Gospel says. And as we see that the law of substance is universal, that the conservation of matter and of energy is inseparably connected, and that the ceaseless development of this substance follows the same "eternal iron laws," we find God in natural law itself. The will of God is at work in every falling drop of rain and every growing crystal, in the scent of the rose and the spirit of man. |