RESPONSIBILITY FOR CONDUCT Since both physical and mental attributes are unquestionably inherited, it becomes a matter of importance to inquire into the nature of the entity we call personality. To what extent is human conduct a product of parentage? Although apparently free agents are we in reality only by infinitely subtle indirections making the responses, forming the habits, establishing the characters which result merely from the blind impulsions of an inherent constitution? If so, who is praiseworthy, who blameworthy? Are men “But helpless pieces of the Game He plays All Mental Process Accompanied by Neural Process.—Whatever the ultimate decision of psychologists may be regarding the relation of mind to the sensory and nervous mechanism of man it is certain that there is so close an association between them that the least alteration in the mechanism means a parallel effect in the mind, or in the words of Huxley, “every psychosis is definitely correlated with a neurosis.” The rind or cortex of gray matter which constitutes the surface of the large cerebral hemispheres of the Gradation in Nervous Response from Lower Organisms to Man.—To comprehend fully the basic nature of human neural responses one must seek the roots in the behavior of lower organisms. For there is found in a simpler form many of the fundamental activities and the first dim gropings which emerge in man as memory, reason and will. As we ascend the scale of animal life we find a continuous advance in A windmill or a weather-vane points toward the source of the wind, obviously not because either exercises any special choice in the matter, but because it is constructed on such lines of symmetry that when the wind strikes it, if it slants the slightest to left or right, the more exposed surface receives the greatest pressure and thus swings the body back into the line of least resistance. Behavior of Many Animals Often an Automatic Adjustment to Simple External Agents.—It is a far cry, of course, from the responses of such a machine as a windmill to the responses of even the simplest living thing, but in spite of the broad gap between the two, there is much reason to believe that the behavior of many living organisms is due in a marked degree to the directive effects of comparatively simple external factors rather than to the complex internal volitions the casual observer is likely to attribute to them. Tropisms.—It is a marked characteristic of all living protoplasm that it has the power of responding to external stimuli. This power of response is termed excitability or irritability. In describing the motor responses of living organisms to stimuli resulting from a change in surroundings the term tropism (Gr. Trope, turning) is frequently used and the kind of stimulus is indicated by a prefix. Thus the term phototropism means a turning or orientation brought about by means of light. An organism which reacts by a movement toward the source of light is said to be positively phototropic, one which moves away from it, Several kinds of tropisms are recognized, such as phototropism or heliotropism, reaction to light; thermotropism, reaction to heat; electrotropism or galvanotropism, to electric current; geotropism, to gravity; chemotropism, to a chemical; rheotropism, to current; thigmotropism or stereotropism, to contact; and chromotropism, to color. Many Animals Show Tropic Responses.—Many of the lower animals seem to have their movements determined more or less mechanically by the action of such external factors, some being positively, others negatively responsive to a given kind of stimulus, or the same individual may be at one time positive, at another negative, according to modifying conditions to be mentioned presently. In plants and in simpler lower animals there is no special nervous system. The responses of these organisms depend on the general irritability of their constituent protoplasm. In other animals a nervous system is developed, crude and diffuse in lower forms, extremely delicate, complex and definitely ordered in higher forms. But it should be borne in mind that nerve protoplasm possesses only in high degree a capacity for irritability, conduction, etc., that is common to all living substance. In keeping with other “physiological divisions of labor” or specialization which mark the increasing complexity of animals, this enormously enhanced sensitivity and conductivity of Certain Apparently Complex Volitions Probably Only Tropisms.—Where nervous systems enter into tropic responses there must be specific sensibility of certain nerve terminations (i. e., sense organs) at the surface of the body. These sensory or receiving nerves connect through the central system with corresponding motor nerves which in turn supply certain specific muscles through the contraction of which the organism is as surely and as mechanically oriented as in the simpler cases. For example, if light is the stimulating agent, when it strikes a positively phototropic animal, if the latter is not already oriented, the eyes or other nerve terminations sensitive to light transmit an impulse through the central nervous system to certain muscles causing them to increase their tension and thereby swing the animal around with its head toward the light. Progressive movements which the organism then makes must carry it toward the source of light. Thus it is not “love of light” that draws the moth into the flame but the mechanical steering of the body toward the source of light through the stimulations produced by the light waves. It is chemotropism, not solicitude for its offspring, which drives the flesh fly to lay its eggs on decaying meat. And it is stereotropism and not a desire for concealment which impels certain animals such as many worms and Complicating Factors.—However, beautifully as these theories of tropisms work out in a broad general way, there are various additional factors entering which must be reckoned with, and these become more numerous and of more consequence as the organism becomes more complex. In the first place certain internal conditions must be considered. Living matter is characterized by its instability. There are continual synthetic and disruptive processes in progress which the physiologist terms metabolic changes. The very “life” of such matter seems to be the manifestation of such changes. Concerning what the ultimate source of these changes is, whether or not indirectly they may be referred to external conditions as seems probable to many biologists, no one so far has ever given a convincing, positive answer. It is sufficient for our purposes to know that they may have set up certain internal stimuli which may modify the behavior of the organism in which they reside, and that the “physiological state” of the organism at the time of external or internal stimulation will condition the response. This physiological condition may be dependent on the general metabolic equilibrium of the animal, or on the extent of previous stimulation by means of the same or different agents. Thus the organism may not always react in the same way to the same stimulus. The intensity of the stimulation and change in the intensity of the stimulation, are also factors to be Many Tropic Responses Apparently Purposeful.—The query arises as to why if these responses are mechanical they are so often apparently purposive; that is, why do they so often subserve some useful end for the animal? While they do not always work out to the animal’s benefit, as for instance in the case of the moth and the light or under many other conditions that can be devised experimentally, as a matter of fact under normal natural conditions they are on the whole The probabilities are that in their first origin the reactions were not purposive. However, if any proved harmful they would result in the extermination of their possessors and hence of that particular strain of individuals. Those types that happened to have useful reactions would be left and in course of time as the process of eliminating the others went on, would become the prevailing types. Any organism which the useful reaction had preserved would tend to hand it down to the succeeding generation where again it would be the conserver of those individuals which possessed it in sufficient degree. Authorities Not Agreed on Details of Tropic Responses.—Although all the foremost modern students of animal behavior accept as facts the more or less mechanical orienting effects of external stimuli, there is by no means unanimity of opinion regarding details. Some stress as the directive factor the continuous action of the stimulating agent on sensitive tissues symmetrically situated. Others would maintain that it is the time rate of change in the intensity of the stimulating agent, or that the factor is different in different cases. Some make much of an automatic sort of “trial and error” system by which certain organisms test out an inimical environment until the path of least irritation is hit upon as the way to safety. The field is a broad one and to get at the finer shades of distinction the reader will have to refer to Tropisms Grade Into Reflex Actions and Instincts.—The tropisms in many cases become indistinguishable from reflex actions and these in turn grade up into the instincts of animals. The latter may be looked on as but subtler and more involved reactions made possible through a more intricate structural organization. As might be expected of instincts, the feature of utility is more in evidence than in simpler tropisms because they have become of proportionately greater magnitude, but the same fundamental mechanism is apparently at bottom of both. It has already been seen how the “instinct” of the blow-fly to lay its egg on meat is interpretable as a chemotropic response. Thus no elaborate psychic mechanism is necessary in such behavior. Instincts.—In the typical instinct there is a series of “chain reflexes” in which one step determines the next until mechanically the whole gamut of changes is run to the last step. It is characteristic of a purely instinctive act that an animal performs it without practise, without instruction, and without reason. Moreover, all of the same kind of animals tend to perform the act in the same way. But with instincts, as with tropisms, the physiological state of the organism must be regarded. For instance, the instinctive reactions of an animal sated with food or hungry will be different. Adjustability of Instincts Opens the Way for Intelligent Behavior.—As we progress in the scale of While the generation of instinctive impulses still occurs it is left more for individual experience to teach discrimination between ends. But we can not escape a fundamental structural mechanism, for with this new capacity of educability must come new structural mechanisms in the nervous system and this must be as faithfully reproduced in each individual as is the basis for any other nervous response. How low in the scale of animal life animals can profit from their experiences to the extent that their future conduct is conditioned thereby is not known. Some would place it as far back as the protozoa, others would not. Where such modification of behavior is possible there must be some mechanism for the storage of impressions in the form of what we term memory. Modification of Habits Possible in Lower Animals.—Among invertebrates such animals as crayfish will acquire new habits, or rather will modify old ones. Even as lowly an organism as the starfish can have changes of habit thrust on it. When a starfish is placed upon its back it rights itself by means of its arms or rays. Professor Jennings found that in a Some Lower Vertebrates Profit by Experience.—Among vertebrates it is known that those as low in organization as fish will profit by experience. They will learn to come for food at a regular time and apparently learn more or less to appreciate the presence of certain obstacles with which they have had unsatisfactory experiences. Professor Sanford sums up what he believes are the limitations of the piscine mental organization as follows: “No fish is ever conscious of himself; he never thinks of himself as doing this or that, or feeling in this way or that way. The whole direction of the mind is outward. He has no language and so can not think in verbal terms; he never names anything; he never talks to himself; as Huxley says of the crayfish, he ‘has nothing to say to himself or any one else.’ He does not reflect; he makes no generalizations. All his thinking is in the present and in concrete terms. He has no voluntary attention, no volition in the true sense, no self-control.” Rational Behavior.—Finally, however, out of these first dull glimmerings of intelligence as exemplified Conceptual Thought Probably an Outgrowth of Simpler Psychic States.—Is the capacity for such conceptual thought, however, which appears as the final efflorescence of complex neural activity something entirely new? Most students of comparative psychology maintain that it is not. Just as one kind of an instinct frequently grows out of another, so has this grown out of the complex of psychic states which preceded it. It apparently is the product of the increasing awareness on the part of animals of their neural processes and the outcome of these processes, which becomes more and more prominent as we ascend the scale of animal life. With the advent of associative memory the mind comes more and more to deal with attributes of objects instead of merely with each single concrete object as it presents itself, and these attributes being common to many objects, come to represent definite ideas which can be manipulated by the mind. Language, of course, has been an The Capacity for Alternative Action in High Animals Renders Possible More Than One Form of Behavior.—With this modification of instinct by experience made possible, there comes at the same time, of course, the capacity for a rational instead of a purely instinctive behavior. This very capacity for alternative action opens up many new possibilities of behavior and together with the well-known fixative effects of habit, also the opportunity of permanently establishing certain ones. Thus it is obvious that a behavior toward which in a strict sense there can not be said to have been an original specific tendency, can be developed. What was present in the first place was only a general possibility of the development of any one of several types of behavior. The final choice of the alternatives together with repetition makes it the habitual behavior of the individual. Of course it can be urged that if the selection of the type of behavior is left to the individual then the latter will operate automatically toward the various impulsions of its neural make-up and one path will be followed because of stronger inclination in that direction, so that the whole procedure is in the end the mere operation of an automaton. But however this may be in the individual left to itself, the fact is in man that the young individual is never left to itself and in the nature of things can not be, so that without entering into this troubled pool of controversy regarding freedom of the will, I wish merely to point out that the possibility Intelligence, reason and habits, however, no less than instincts and tropism must have neural as well as psychical existence and we can not escape therefore the underlying mechanism. The Elemental Units of the Nervous System Are the Same in Lower and Higher Animals.—It is interesting to note that the fundamental neural mechanism which underlies the mental processes of higher animals is not essentially different from that which serves in lower forms. Although as animals become more complex their nervous systems have become proportionately larger and incomparably more intricate, still all the changes have been rung on the same basic neural unit, the neuron or nerve-cell (Fig. 32A, p. 209). The higher nervous system differs from the lower in the number, in the specializations and in the associations of these units rather than in possessing something of entirely different elemental structure. Neuron Theory.—According to the prevailing modern conception the entire nervous system is made up of a series of units called neurons. Each neuron is a single cell with all its processes. The latter consists typically of short branching processes on the one hand, known as dendrites, and of a single process on the other, known as the axon, which extends from the cell to become a nerve fiber (Fig. 32, p. 209). The various neurons, with possibly a few exceptions, are not Fig. 32 A—Diagram to illustrate neurons and their method of connection; a, axon; d, dendrite; s, synapse. To simplify the diagram the medullary sheathes of such fibers as would have them have been omitted. The arrows indicate the direction in which the impulse travels. The lower series shows diagrammatically how from the same neuron in the cortex two subordinate neurons may be affected, the one excited to cause contraction of a certain group of muscle fibers, the other inhibited so that the antagonistic fibers may relax and thus not hinder the movement of a given part. B—Section of a region of the cerebral cortex (after Cajal). The cells have been blackened with chrome-silver and are much less highly magnified than the diagrams in A. The numerals refer to certain characteristic layers of the cortex in this region. Characteristic Arrangements of Nerve Cells Are as Subject to Inheritance as Other Structures of the Body.—That the main features of the nervous system As we have already seen, the cerebral cortex is the seat of the chief mental faculties of man or at least of the highest of these. Professor Lloyd Morgan, one of our greatest authorities on comparative psychology, is inclined to believe that the instincts are located in the subcortical material. In any event, the inheritance of mental ability resolves itself into the inheritance of a certain cerebral mechanism. Different Parts of the Cortex Yield Different Reactions.—The cerebral cortex, however, is not functionally homogeneous throughout. Certain regions have been shown to be motor, others sensory, and moreover, these regions are apparently further specialized so that a given one of them is associated with a specific type of sensory or motor response, not merely with responses in general. Thus by injuring one of the sensory areas we might destroy vision but not other sensations, or by stimulating one of the motor It seems highly probable that just as the sensory and motor areas differ in kind from one another, so we must suppose there are qualitative differences in various parts of the association areas so that the different parts give different reactions in consciousness; that is, each special mental ability of the individual is more or less centered in a special part of the cortex. And just as there may be variations in other structures of the organism so there may be variations in these areas. The “gifted” person in some one direction, whether it be in mathematics, music, painting, or what not, is on this hypothesis one who has that particular area of his brain which forms the basis for the talent in question more highly developed than it is in the average individual. And since such talents are handed down to descendants, this can only mean that a similar grouping of the neurons in the region in question has occurred. Skill Acquired in One Special Branch of Learning Probably Not Transferred to Another Branch.—Such a differential arrangement of the brain-mechanism which presumably underlies the various mental Just how far we are warranted, however, in carrying this idea of localized functions as regards the association areas is a moot question. Our present attitude regarding the specificity of such localizations is largely a matter of inference based on analogy to conditions which obtain in other and better known parts of the brain, together with the indubitable differences in inborn abilities which exist between individuals. Some few brain physiologists maintain that the whole cortex operates more or less as a unit in all of the higher psychical activities. Preponderance of Cortex in Highest Animals.—One of the most interesting conditions in the nervous system of the highest types of animals is the way in which the cortex has outrun the other parts of the brain in size and complexity and has come to dominate the organism more and more both directly and indirectly. Aside from the proportionately greater More Long Fiber Tracts in the Spinal Cord of Man.—The spinal cord although having many nerve centers of its own is also in great part a large cable for conducting enormous numbers of fibers from one part of the cord to another, or to and from the brain. In man and the higher apes a considerably larger percentage of the total area of the cord is given up to the long fiber tracts from the brain to the body than in lower vertebrates. This progressive increase in long fiber tracts in the higher anthropoids probably marks more and more domination of the body by the higher brain centers and correspondingly less by the direct activity of the cord and by the lower brain centers. However, even in man, many of the simpler reflexes of the body still have their centers in the spinal cord. Special Fiber Tracts in the Cord of Man and Higher Apes.—There are certain special tracts of the cord that are particularly interesting in connection with the increasing domination of the brain over the body, namely, the pyramidal tracts. These were the latest tracts to appear in the animal kingdom and are apparently the latest to become functional in the individual. It is believed that the development of the medullary substance (an enveloping sheath) of the common medullated nerve fiber marks the time of entrance of the fiber into activity and it is a significant fact that the formation of this sheath occurs last of The direct pyramidal tracts occur only in man and man-like apes. They vary considerably in extent in different individuals. They originate in nests of characteristic large cells located in the cerebral cortex and are regarded as paths, though not the only ones, through which volitional impulses are conveyed from the brain. They seem to control certain of the finer and more delicate movements of the body. Great Complexity in Associations and More Neurons in the Brain of Man Than of Other Animals.—It has already been noted that as animals stand higher in the scale of life while the general plan of their neural elements remain the same, there is increasing complexity in the number and connections of the neurons. The number of processes on individual nerve-cells is also greater. There is in fact much greater complexity in the number of processes and the Of especial significance in the psychic make-up of man is his vastly increased capacity for inhibition. Although not possessed by all men in equal measure and not entirely wanting in lower animals it is a distinctive feature in all human conduct. Much of any child’s education, particularly as it pertains to behavior, must be concerned with training in the exercise of proper inhibitions. He must learn to suppress certain primitive types of reaction in favor of higher ones. This applies not only to motor activities but to trains of thought as well. The essence of self-control consists mainly in ability to substitute for one impulse or idea other compensating ones. And the secret of concentration lies in being able to banish irrelevant ideas and focus on the central thought. The Nervous System in the Main Already Staged at the Time of Birth for the Part It Must Play.—It is clear from what is known of its anatomy that in the main the central nervous system is framed to respond in certain set ways, that there are determinative elements in it which control or determine the responses, Many Pathways of Conduction Not Established at Birth.—As we have already seen the evidence is that many of the neural pathways are not yet fully established at birth, and there is some indication that routes once opened may be altered. To what degree this has bearing on behavior is still unknown, but since neurologists attribute so much importance to the richness and the associations of the cell-outgrowths, it is evident that this increase in the number of pathways after birth with possible alternatives of connections may be a very important factor in the modification of behavior. Yet, on the other hand, we are completely in the dark as to what extent these later associations are predetermined in the earlier cells. The Extent of the Zone That Can Be Modified Is Unknown.—There is little doubt that many of the paths of action are already firmly established. Others, although not irrevocably fixed, offer the least resistance and would “naturally” be taken if not counteracted or modified by the more or less artificial development and fixation of other paths through cultivation and habit. Yet others perhaps are largely neutral; they still await the initial decisive push which “choice” or external environment may mete out to them. As This is a point too frequently overlooked by educators. They are often unduly actuated by the other piece of the truth that, “as the twig is bent the tree inclines.” They sometimes fail to realize that after all the tree remains the same kind of a tree. If an apple tree, while it may be bent from the normal path of development, it can not produce other fruit than apples. Just how much the destiny of man can be influenced by training and the exercise of his own will power is the fundamental question not only of pedagogy but of ethics as well. For if man’s rational judgments are markedly conditioned by his neural make-up then the volitional judgments which underlie conduct are likewise conditioned since they are inextricably intermingled with his reason. We must believe that to a considerable extent emotional expression, as well as other mental functions, is due to Various Possibilities of Reaction in the Child.—Despite the innate predeterminations of the tree, it is nevertheless our province to see that the twig is bent, but our work can only be done with due intelligence when we recognize something of the limitations of our material. Of the various possibilities of reaction we must see that certain desirable ones are realized, even, in some cases, if only to have others thereby excluded. It is a commonplace of psychology that all cerebral excitations, no matter what the origin, must vent themselves in some way and if this expression is not directed into proper channels it will very likely find improper ones. We must see that the young wearer of the coat of undetermined capacities gets it set by repeated performance into the habitual wrinkles of normal social conduct. For it is a trite observation that when habits are once well established it requires tremendous efforts to do otherwise than as they dictate. There is not the least doubt that some of our subjects will respond much more readily to training in certain directions of habitual reactions than others, but we have always the consolatory knowledge that no matter how difficult the art may be at first, repetition reduces the difficulty. While much of any youth’s character must be determined by external forces brought to bear upon it, the ultimate climax of our effort and measure of our success will be the extent to which we have engendered in him the capacity for initiating and carrying out Probable Origin of Altruistic Human Conduct.—Those phases of human conduct which find expression in consideration for others seem no less than other mental attributes to have their origin in certain fundamental instincts. Altruistic conduct, in last analysis, apparently resolves itself back largely to certain very fundamental impulsions, namely those which arise out of certain obligations for the welfare of others which are necessarily associated with the marital, parental and filial relations that must exist where the young require post-natal care. Looked at from the standpoint of natural selection, this would come about as a mere matter of survival value. Where the young, as in man, are helpless for a long period of time, more opportunity would be afforded for the development of both conjugal and filial affection. The sympathetic emotions once established in such family relations would partly through habit, partly through community of interest, readily become extended to clan or tribe and as a final consummation to all mankind. Training in Motive Necessary.—In the training of children, then, we must recognize first of all that there are decided inclinations or bents which, as long as they are not anti-social in nature, must be respected if not always encouraged. While it is necessary to utilize these as much as possible in their training still we must bear in mind that although it is natural for a child to follow certain interests, the fact remains that as regards social worth these natural interests may not be the most valuable. When this is true we must strive Actual Practise in Carrying Out Projects Is All Important.—But on the other hand it is equally important to see that the action is effectively carried out. In the matter of self-discipline, particularly, we may have many ideal impulses and realize that they should prevail over certain of our natural propensities, but unless we put forth effort to overcome the propensities our ideal impulses are of no avail. The world has many such moral paralytics to-day who can not seize their “languor as it were a curling snake and cast it off.” It is training in this very overcoming of reluctance, in this putting forth of actual effort toward worthy ends instead of merely memorizing precepts about the desirability of such accomplishments, that is so sadly lacking in our school and home life to-day. We prate of the importance of self-control, we say with our lips that the way to learn to do is by doing, we proclaim that it is more vital to instil good mental and physical habits into our pupils than to stock them with information, we preach that mere fact training is as conducive to making a first-class rascal as an upright man, yet we jog on complacently in the well-beaten ruts of memory routine which require the memorizing Where in school or home to-day do we find provision for such training? Our tendency is, in fact, just the opposite. According to the modern code, as it works out in many instances at least, the child must be taught through play. Though it is a truism that he who has not learned obedience can never be master of himself, the child of to-day must not be made to obey but be wheedled into changing his mind. If a given subject of study proves distasteful to him, the fault is the teacher’s for not making it interesting, for he must always be led on by the thrill of fascination. In other words, the child must not only be allowed but be encouraged to take the path of least resistance. His own pleasure is to be the standard of his actions. Let no stern demands of duty interfere! Is it any wonder that the products of such tutelage come into the activities of life self-indulgent and undisciplined, and although often recognizing our private and public shame in business, politics and conduct, still remain supine, evasive of the unpleasantness or hardships of reform, or inefficient or unwilling in accomplishing unselfish ends? Conduct Developed Through Actual Performance.—Self-control and the will to do can be trained and crystallized into habit as well as can any other activity. It is a fact that one well grounded in morals by habit will successfully resist subconscious impulsions to wrongdoing even when suggested in the hypnotic state. Conduct is largely a matter of growth through actual performance. For proper guidance of this growth there must, of course, be high ideals around which the feelings are led to cluster and by which they gradually come to be controlled. Construction of Ideals.—The construction of such ideals through example, through precept, through appeal and through actual practise in self-denial and self-control on the part of the child, should be the foremost duty of the parent or teacher. Above all it should be remembered that imitation of teacher, of parents, of companions, is more of a factor than intellect in the moral action of children. At present The Realization of Certain Possibilities of the Germ Rather Than Others Is Subject to Control.—It may be said in a sense that there exists potentially in any germ all the things that can possibly come out of it under any obtainable conditions of environment. The very initiation of a given mode of expression by some environmental factor, however, often mutually excludes many of the others. We get a given average result ordinarily because development normally takes place in a given average environment. As may be easily shown by experiment, this is manifest even in the instincts of lower animals. In the young the various instincts do not come into expression at the same time, and it not infrequently happens that if one of the earlier instincts becomes operative toward certain objects or situations, later instincts will have a wholly different relation toward these objects or situations than they would otherwise have had. As a result the whole life conduct of the animal is markedly modified. For example, young animals immediately after birth have no instinct of fear. They do, however, have a strong instinct to attach themselves to some moving thing and follow it. The utility of such an instinct, as for instance in the case of young chickens, is obvious. The object of attachment is usually the parent, but man may take We have seen in a former chapter that what in the ordinary course of nature was “predestined” to become one individual nevertheless contained the possibility of becoming four or more if the environing conditions were made such as to bring about a separation of the cleavage blastomeres. Or a fish egg that contained the possibility of becoming a normal two-eyed form also contained the possibility of becoming a one-eyed form and could be made to do so by certain unusual modifications of the conditions under which it develops. However we must not be led so far by the plausibility of this comparison that we are misled, for the fact is that we are not creating anything new by these environmental upheavals, but are mainly altering features that already exist. Beyond doubt the nature of the material is of greater import in the specificity of the outcome than are the external forces brought to play on it. The only point I wish to make is that even what seem ordinarily to be predestined ends can be Our Duty to Afford the Opportunity and Provide the Proper Stimuli for the Development of Good Traits.—It is clearly our duty to see that the expression of good traits is made possible. We must throw a sheltering screen of social environment around the young individual which will fend off wrong forms of incitement and chances for harmful expression, and we must provide proper stimuli and afford opportunity for development of proper modes of expression. We must not forget that a normal instinct denied a legitimate outlet will not infrequently find an illegitimate one. Above all we must not forget the vital importance of establishing correct habits nor the possibility of even replacing undesirable ones by good ones. If training can redirect the machine-like behavior of as lowly a creature as the starfish into new courses, why should we be so willing as some of our If the individual himself has not the initiative or will to make the attempt to set up proper or corrective habits, or to cultivate the necessary specific inhibitors, then all the more is it our duty to see that he is led by suggestion and drill into the proper routine of activities for their establishment. For if the individual with propensities toward moral obliquity is to be saved to society it must be through the stereotyping effects of good habits. Moral Responsibility.—Beyond question different men have different degrees of capacity for mental and moral training. All can not be held equally responsible ethically, but the lowermost limit of obligatory response to social and ethical demands necessary to rank one as within the pale of normal conduct is at such a level that any one not an actual defective can in a reasonably wholesome environment surmount it. All normal men are responsible for their conduct. |