CHAPTER IV

Previous

MENDELISM IN MAN

The Mendelian Principles Probably Applicable to Many Characters of Man.—We are really just beginning to make the proper observations and collect the necessary data with reference to the application of Mendelian principles to the traits of man. Yet brief as has been our study we have disclosed much significant evidence which makes it seem highly probable that many of his characters, good and bad, of mind and body are as subservient to these laws as are the traits and features of lower forms. Davenport and Plate record over sixty human characters or defects which are seemingly inherited in Mendelian fashion. Although about fifty of these are pathological or abnormal conditions, this does not mean that such conditions are more prone to follow Mendelian inheritance but merely that being relatively conspicuous or isolated they are easier to follow and tabulate.

Difficult to get Correct Data.—While it must be said that in many cases no simple form of Mendelian tabulation has been unequivocally established, yet the general behavior of the various inheritable traits in question is so obviously related to the conventional Mendelian course that there seems little reason for doubting that they are at bottom the same. Failure to obtain exact proportions may be attributable in part to the probability that what we loosely regard as a character should in reality be analyzed into more elemental components, and above all to the fact that from the very nature of the conditions under which human records must be obtained, there is considerable chance of inaccuracy or error in such accounts. How many human traits follow Mendelian rules remains largely for future investigators to establish.

We are handicapped at the outset in man by the many difficulties of getting correct data from the genealogies on which we must depend, or in fact of getting any genealogy at all, for in this country at least, most families keep imperfect records of births and deaths and many of the institutions for the various kinds of defectives have little in their records that will help us in following out hereditary conditions. Then in matters of disease we meet with the fact that many former diagnoses were erroneous. In yet other cases, and this is particularly true among mental and moral defectives, we are often not sure of the paternity of a given child. Furthermore, one is likely to be misled by the proportions which may occur in the very limited number of children of any given couple.

Still other difficulties exist. Among these is the fact, for example, that in many cases of defect or susceptibility to disease, a given individual in the stock may have the trait in an expressible and transmissible form, yet it never comes to expression because that individual has been fortunate enough to escape the environmental stimulus which would call it forth. Thus one highly susceptible to tuberculosis might escape infection, or persons hovering on the verge of insanity might never receive the precipitating stimulus which would topple them into actual insanity; yet each would be wrongfully recorded in a genealogy looking to such traits as perfectly normal. Or again if it be a question of intellectual brilliancy as shown by accomplishment in the realm of scholarship, or of worldly affairs, the ones who although possessing them have had no chance to display unusual talents would be tabulated as average whereas in fact they should be recorded as of high rank. That this is particularly likely to happen in the case of women is evident.

A Generalized Presence-Absence Formula for Man.—In man as in lower forms some characters or traits are due presumably to the presence of determiners or to their absence. Likewise, dominance and recessiveness are as much in evidence, for in tracing back pedigrees of various traits we find the same forms of tabulation that obtain for these conditions in plants and lower animals hold good. For typical cases in man let us use a generalized presence-absence formula and the arbitrary symbol A for the presence of the determiner of the character (double in the individual, single in the germ) and a for its absence. Thus AA represents a condition in which similar determiners have been derived from both parents and the individual is duplex as regards the character in question; each mature germ-cell will have the determiner. Aa represents a condition in which the individual has received the determiner from only one parent and is therefore simplex with regard to the character; half of the gametes of such an individual will have the determiner and half will lack it. Lastly, aa represents total absence of the determiner. Such an individual is nulliplex. He or she will not have the determiner represented in any of the gametes, and can not, of course, transmit a trait represented by the determiner.

It is evident that six kinds of gametic matings are possible among individuals representing these various formulÆ. These matings are as follows:

Matings Possible
couplings
gametes
Product
1. Nulliplex x Nulliplex (aa x aa) == == all nulliplex
2. Nulliplex x Simplex (aa x Aa) == == 50 per cent.
with character
nulliplex and
50 per cent.
with it simplex.
3. Nulliplex x Duplex (aa x AA) == == all with
characters
simplex
4. Simplex x Simplex (Aa x Aa) == == 25 per cent.
with characters
duplex, 50 per
cent. with it
simplex and 25
per cent. with
it nulliplex.
5. Simplex x Duplex (Aa x AA) == == 50 per cent.
with character
duplex and 50
per cent. with
it simplex.
6. Duplex x Duplex (AA x AA) == == all duplex.

Indications of Incomplete Dominance.—While in cases of strict Mendelian dominance it is not possible to distinguish directly the simplex from the duplex condition, as a matter of fact the individual of simplex constitution sometimes has the character represented in the single determiner less perfectly developed than in the corresponding character of duplex origin. In studying defects in man due to the absence of a determiner, where theoretically presence of the determiner (normality) is dominant over its absence in individuals of simplex constitution, one finds it recorded with increasing frequency that such individuals are more or less “intermediate” or are “tainted” with the defect; thus showing that the defect though obscured is not wholly in abeyance. Thus individuals carrying epilepsy or feeble-mindedness which are regarded as recessive traits, while not showing specific feeble-mindedness or epilepsy, may nevertheless apparently show a neuropathic taint in the form of migraine, alcoholism or other lapse from normality. The condition is seemingly more akin in some cases to that found in the offspring of certain red flowers crossbred with white flowers, which though red do not show the same intensity of color as the original red parent. Just as here the single determiner or single “dose” of redness is insufficient to produce the intensity of color that appears when the offspring receive two determiners for red, one from each parent, so in man a single determiner for normality of a specific character is inadequate in some cases to make the individual wholly normal. Or possibly some cases are more of the type of those in which the character in question, for instance the red color of some wheats and corn, may be produced by any one of two or three determiners, the intensity of the characters (red color, e. g.) depending on whether one, two or three determiners are present.

Why After the First Generation Only Half the Children May Show the Dominant Character.—If the trait is a simple dominant one it is clear that it will appear in each generation and always spring from an affected individual. By referring back to our tabulation of possible matings on page 100 where the dominant character is represented by the letter A, this can be seen at a glance. If the trait is present in the duplex condition in one parent and absent from the other, then formula 3 applies; all children will show the trait, but in the simplex form (Aa). If the trait is present in the simplex form in one parent and absent in the other, formula 2 applies. Fifty per cent. of the children will have the character in the simplex form (Aa) which means also an even chance of transmitting it to their offspring; fifty per cent. will not inherit it and will be incapable, furthermore, of transmitting it, since they have become nulliplex (aa). In human genealogies if an individual having an unusual trait which is inherited as a dominant marries a normal person and half of the offspring show the trait (and this is common), this means that the parent manifesting the trait had it represented only in the simplex condition, otherwise all of the children would have shown it. Even though the original ancestor who first developed the condition or structure may have had it in a duplex form, it would after the first mating, if this were with an individual lacking the trait, be represented only in the simplex form (see formula 5) and could never become duplex again unless two individuals both having the character married, and then only in twenty-five per cent. of the offspring (see formula 3). If the trait is a defect all the children showing it, even though marrying normal (nulliplex) individuals, will pass it on again to half their children, but those who do not show it may ordinarily marry with impunity since its non-expression in their make-up means, as far as we know at present, that their germ-plasm has been purged of the defect and that they are therefore nulliplex with reference to it.

Eye-Color in Man.—Of normal characters in man which follow the Mendelian formula perhaps eye-color is the best established. Brown or black eye-color is due to a melanin pigment absent from the blue or gray eye. That is, a brown eye is practically a blue eye plus an additional layer of pigment on the outer surface of the iris. The different shades of brown and the black are due to the relative abundance of this pigment. Gray color and the shades of blue seem to be a modification of an original dark blue, due to structural differences in the fibrous tissues of the iris.

In inheritance brown or black is dominant to blue or gray, or in other words the presence and absence of a pigment P constitutes a pair of allelomorphs. Hence two brown-eyed parents, if P is duplex in both (or duplex in one and simplex in the other) can have only brown-eyed children. Thus,

1. PP × PP = PP, or all duplex brown.

2. PP × Pp = PP and Pp, half duplex brown and half simplex brown.

If each parent has brown eyes but in simplex condition, then one-fourth of children will have blue or gray eyes; for example,

Mating Gametic
couplings
Product
Pp × Pp == == PP, Pp, pP, and pp, or one-fourth
duplex brown, one-half simplex
brown, and one-fourth blue or gray.

If both parents have blue or gray eyes they can not have children with black or brown eyes, since the recessive condition in each parent means total absence of brown pigment in both.

If one pair is duplex brown and the other blue, then all children will have brown eyes but of simplex type.

If one parent has simplex brown eyes (type Pp) and one blue (pp) then one-half of the children will have brown eyes of simplex type and one-half will have blue eyes.

Occasional objections have been raised against the Mendelian interpretation of inheritance in eye-color, but the cases cited in evidence against the theory usually narrow down to those in which the color is so diluted as to render classification uncertain. For example, hazel eyes are sometimes called gray; they belong however to the melanic pigmented type although the brown pigment may be much diluted and occur mainly around the pupil. So-called green eyes are due to yellow pigment on a blue background. In the rare cases where in the same individual one eye is brown and the other blue, the individual should probably be rated as brown-eyed on the supposition that in the one eye the development of brown pigment has in some way been suppressed.Hair-Color.—The inheritance of hair-color has also been the subject of considerable study and while the conditions are not so simple as in the case of eye-color, there is little doubt that it belongs in the Mendelian category. In human hair, color has as its foundation apparently two pigments, black and red. Absence of one or both or various combinations or dilutions of these seemingly account for the prevailing colors in human hair. In general dark hair is dominant to light, although because of the delay sometimes in the darkening of the hair in children this fact is often obscured. Black is dominant to red. People with glossy black hair, according to Davenport, are probably simplex for black, the glossiness being due usually to recessive red. The expectation would be for some of the children of such a pair to have red hair.

In man occasionally a congenital white lock contrasting strikingly with the remaining normally pigmented hair occurs. It behaves as a simple dominant in heredity.

Hair-Shape.—Again, straight and curly hair seem to be distinct inheritable characters. Curly is incompletely dominant to straight, the simplex condition yielding wavy hair.

Not to enter into details of the matings, statistics gathered by Mr. and Mrs. Davenport show that, two flaxen-haired parents have flaxen-haired children; two golden-haired parents have only golden-haired children; two parents with light brown hair have children with hair of that color or lighter, but never darker; two parents each with dark brown or black hair may have children with all the varieties of hair-color. Summing together a series of recessives Davenport points out that two blue-eyed, flaxen or golden and straight-haired parents will have only children like themselves.

Fig. 21

Diagram showing descent of brachydactyly through five generations; black symbols indicate affected individuals; ?, male; ?, female (after Farabee).

Irregularities.—If a dominant trait or defect depends on more than a single factor, as is sometimes the case, or if it is modified by sex or other conditions, as is true of certain characters, some of which, such as color-blindness, have already been examined, then we shall find some apparently non-affected individuals having affected offspring. Certain diseases, for example, are generally transmitted by affected members of the family to their children in the expected Mendelian ratio for a dominant, yet an occasional skip of a generation may appear in which an apparently perfectly normal individual transmits to his children what, except for the omission in his own case, appears to be an ordinary dominant character. This occasional lapse in the appearance of a character when theoretically it should appear is doubtless due in some instances to the fact that what is really inherited is a tendency, and although this is present in the apparently normal individual, for some reason the condition itself has not appeared. This might especially be true in the case of a disease which does not manifest itself until late in life. In other cases there are undoubtedly complicating accessory conditions which modify the behavior of the trait somewhat.

OTHER CASES OF DOMINANCE IN MAN

Among other normal characters in man, as far as available evidence goes, dark skin is dominant to light skin; normally pigmented condition to albino; and nervous temperament to phlegmatic.

Digital Malformations.—An interesting and easily followed defect is a condition known as brachydactylism, in which the digits are shortened because of the absence or rudimentary condition of one segment. The fingers, therefore, appear to be only two-jointed like the thumb. Several families showing this defect have been charted and it appears to behave as a typical dominant. In looking over such a chart (Fig. 21, p. 106) one is struck by the fact that only half of the children from most of the matings show the defect, but when we recall that the affected parent, after the first generation, probably carried the condition in only the simplex form and married a normal individual, such a result is just what would be expected (see formula 2).Polydactylism (Figs. 22, 23, pp. 109, 110) is a condition in which there are extra digits on hands or feet. The character, with apparently slight exceptions in a few records, behaves as a typical dominant. Among other digital defects which are inherited as a dominant is a condition known as syndactylism (Fig. 24, p. 111), in which two or more digits are fused side by side. For an example of syndactyly which seems to be in the class of sex-linked characters, see Fig. 15, p. 65.

Eye Defects.—Congenital cataract is another not uncommon defect in man which is transmitted as a dominant (Fig. 25, p. 112) with occasional irregularities. It is a condition of opacity of the lens of the eye which produces partial or total blindness. In a paper on Hereditary Blindness and Its Prevention, Clarence Loeb (1909) mentions 304 families of which pedigrees have been published. Of the 1,012 children in these families 589, or 58 per cent., were affected. It is obvious that this is near the expected percentage in the case of a dominant trait where matings of affected with normal individuals prevailed. An unfortunate circumstance about this malady from the eugenic standpoint is the fact that it is frequently of the presenile form which comes on late in life so that it is usually impossible to predict whether an individual of marriageable age is immune or will later become affected.

Fig. 22

Radiograph (Courtesy of Dr. W. B. Helm) showing polydactyly in a child’s hand. For genealogy of this see Fig. 23, p. 110.

Fig. 23

Chart showing a history of polydactylism through five generations in the B—— family. The individual whose hand is pictured in Fig. 22, p. 109, is of the fifth generation. Squares represent males, circles females.

Another defect of the eye following the course of a dominant in heredity is a pigmentary degeneration of the retina known as retinitis pigmentosa. Atrophy of the optic nerve is also involved and the final result is blindness. Still another example frequently cited is that of hereditary night blindness (hemeralopia), a disease in which the affected person can not see by any but the brightest light. In most affected families the final outcome is usually total blindness. One of the most remarkable pedigrees of defects in man ever collected is one of this disease published by Nettleship. He succeeded in tracing the defect through nine generations, back to the seventeenth century. The genealogy includes 2,116 persons. The character behaves as a single dominant in males, but frequently, though not always, females may be carriers of the defect in transmissible form though not exhibiting it themselves. That is, males in which the condition is simplex (Aa) develop the defect but females of similar simplex constitution (Aa) frequently do not. It follows, therefore, that normal males of such strains will have normal offspring but normal females may have affected children.

Fig. 24

Radiograph (Courtesy of Dr. W. B. Helm) showing a partial syndactyly in each hand of an individual. Some degree of webbing between the more distal portions of the affected parts is usual.

Fig. 25

Pedigree of a family with presenile cataract (black symbols); numbers in circles indicate unaffected individuals (after Davenport).

Other Defects Inherited as Dominants.—Not to go into details other defects which behave as dominants or modified dominants in human inheritance may be mentioned. The following list is not complete and it must be understood that in some cases the statistics are insufficient to justify us in making anything but a tentative decision. We may thus enumerate as dominant over normality: Achondroplasy (abnormally short limbs with normal head and body); Keratosis (thickening of epidermis); Epidermolysis (excessive formation of blisters); Hypotrichosis (hairless, toothless condition); Diabetes insipidus; Diabetes mellitus; ordinary (not Gower’s) muscular atrophy; Glaucoma (internal swelling and pressure of eye-ball); displaced lens; Coloboma (open suture in iris); spottedness of hair-coat; and corneal opacity.

As a final illustration of a serious malady in man which acts as a dominant in inheritance, let us take Huntington’s chorea. Ordinary chorea, or St. Vitus’ dance, a disorder characterized by involuntary muscular movements, is commonly though not always confined to children and usually ends in recovery, but Huntington’s chorea appears typically in middle life and is a much more dangerous malady. Fig. 26, p. 114, represents the family history of one of five cases which have been studied by Doctor Lorenz in the Mendota Hospital for the Insane. All charts which have been platted of this malady show it to be inherited as a dominant. This means that half of the children of an individual who carried the malady in the simplex condition, and all the children of one who carries it in the duplex condition, are probably marked for this terrible end. And the true horror of it can only be appreciated by one who has seen the last stages of the malady. The victim once in its grasp gradually becomes wrecked in mind and body; the muscular twitchings and disorders of movement continually increase and dementia progresses until at last death ensues. Fig. 27, p. 115, is another chart showing inheritance of Huntington’s chorea. In still a third case at the Mendota Hospital, the gravity of the situation can be appreciated when one realizes that the patient is the father of ten children, ranging in age from one to seventeen and one-half years. The calamitous fact that this disease does not manifest itself usually until middle life makes it likely that these children will all reach maturity, marry and in turn probably produce offspring before the doomed members of the family realize their fate.

Fig. 26

Chart showing descent of Huntington’s chorea in the P—— family (courtesy of Dr. W. F. Lorenz). Squares represent male, circles female; shaded figures are choreic members of the family; partially shaded figures, slightly affected or very “nervous” members. The members of the last generation are for the most part still too young to show their condition. The cross indicates the individual in the asylum from whom the record was traced back.

CASES OF RECESSIVENESS IN MAN

Recessive Conditions More Difficult to Deal With Because They Are Frequently Masked.—Coming now to the question of recessive conditions in man, we find that defects are more likely to be of recessive than of dominant type. Apparently normality usually means the presence of normal determiners and abnormality, the absence of some essential determiner. In the latter case, a unit-factor has seemingly been lost out in some way in the germ-plasm, and the product of such germ-plasm is therefore incomplete. As long as the loss is counterbalanced by the presence of a single determiner from the other line of ancestry, that is, as long as the simplex (Aa) condition prevails, the loss may not be in evidence, except in cases of incomplete dominance (taints, etc.), but any mating which permits of the production of the nulliplex condition will bring the defect to expression again.

Fig. 27

Chart showing inheritance of Huntington’s chorea in the R—— family (courtesy of Dr. W. F. Lorenz); 1, 2 have been patients at Mendota Hospital for the Insane; 3, died of “paralysis”; the fourth or last generation indicated by the cross, ranging in age from 6 to 14, are too young yet to show their condition as regards this malady.

The obscure nature of recessives makes such conditions more difficult to deal with than dominant defects. For as regards the latter we have seen that marriage of unaffected members of the family as far as that particular trait is concerned, is perfectly safe, even to a cousin, for once the germ-plasm is purged of such a positive factor, it, in so far as we know, remains pure. But in the case of a recessive character due to the absence of some necessary determiner a normal offspring of simplex constitution (Aa) will probably transmit to half of his children the capacity for handing on the defect, or if mated to another normal individual of simplex constitution (Aa) is likely to have the actual defect revealed again in one-fourth of his children and latent in two-thirds of the remainder.

Albinism a Recessive.—As an easily understood illustration of this type of case we may take human albinism, a condition which is due to the absence of a pigment-developing determiner. According to Davenport the albinic condition is recessive to normal condition. If albino (aa) is mated with albino (aa) nothing but albino children may be expected. An albino (aa) mated with a normal individual will have normal offspring (Aa), but they will have the capacity for transmitting albinism to their descendants. Thus the normal offspring (Aa) of an albino (aa) and a normal parent (AA) if mated to another normal individual (Aa) who has also had an albino parent will probably transmit actual albinism to one-fourth of his children and the same capacity that he himself has of producing albinos, to one-half of his children, although the latter will appear to the eye to be normal.

Other Recessive Conditions in Man.—If for albinism we substitute certain forms of insanity, hereditary feeble-mindedness (Fig. 28, p. 118), or hereditary epilepsy, all of which apparently follow the same law, we can readily understand how unfit such matings are where both strains are affected. Marriage with similarly defective stock will result in the affection appearing in one-fourth of the progeny, and one-half of them, though apparently normal themselves, will have the capacity for transmitting the imperfection. It is in the existence of such hidden factors that the chief danger in the marriage of cousins, or in fact any consanguineous marriage lies.

A few of the various defects which seem to be inherited as recessives when mated with normality are: susceptibility to cancer; chorea (St. Vitus’ dance); true dwarfism (all parts proportionately reduced); Alkaptonuria (urine darkens after passage); alcoholism and criminality, where based on mental deficiency; hereditary hysteria; multiple sclerosis (diffuse degeneration of nervous tissue); Friedreich’s disease (degeneration of upper part of the spinal cord); Merriere’s disease (dizziness and roaring in ears); Thomsen’s disease (lack of muscular tone); hereditary ataxia; possibly the tendency to become hard of hearing with increased age; and possibly, non-resistance to tuberculosis.

Of non-pathological conditions in man which are inherited as recessives, apparently either very great or very small intellectual ability are examples.

Fig. 28

Chart showing descent of feeble-mindedness as a typical recessive (after Goddard). Squares represent males, circles females; DD, homozygous dominant; DR, heterozygous dominant (i. e. normal although a carrier); RR, pure recessive; N, normal; F, feeble-minded; A, alcoholic.

Breeding Out Defects.—Even though recessive defects occur in a stock, there is the possibility of diluting out the imperfection in successive generations if care is taken always to marry into a stock wholly free from it. For example, a normal individual carrying a recessive defect will bear the abnormality in half of his or her germ-cells. This means that when such an individual marries a normal, non-carrier, half of their children will be wholly normal (AA) and half will be carriers; normal but of simplex constitution (Aa). If now this generation, carriers and non-carriers, marry only into normal strains of duplex constitution, then their combined issue will be likewise normal with only one-fourth of them carriers of the imperfections. This means that even if all of this last generation were married to persons having the defect only one out of four would have children showing it although the remaining children would be carriers. On the other hand if mated to normals only one-eight of the next generation would be carriers. Thus by continually marrying into strong strains liability to manifest any recessive defect can be diminished in a few generations until the descendants are no more likely to have defective children than are members of our ordinary population.

The proportion in which the recessive defect would appear in successive generations if all persons in a given generation married only normal individuals who were non-carriers is indicated in the following table where AA indicates a normal individual, Aa one who is normal but a carrier, and aa an individual with the imperfection expressed; to indicate proportions simply after the first generation, four is arbitrarily chosen as the number of children which results from each marriage:

Matings Children
Generation 1 aa × AA == Aa
Generation 2 Aa × AA == 2AA + 2Aa
Generation 3 AA × AA == 4AA
AA × AA == 4AA
Aa × AA == 2AA + 2Aa
Aa × AA == 2AA + 2Aa
12AA + 4Aa

Other Inheritable Conditions in Man.—While many pedigrees show beyond dispute that such qualities as musical ability, literary ability, memory, calculating ability, mechanical skill, longevity, peculiarities of handwriting, obesity and muscular strength, for example, are inherited, their modes of inheritance have not yet been sufficiently analyzed to express them exactly.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page