MENDELISM New Discoveries in the Field of Heredity.—Writing in 1899, one of America’s well-known zoologists asserts that, “It is easier to weigh an invisible planet than to measure the force of heredity in a single grain of corn.” And yet only two or three years later we find another prominent naturalist saying regarding heredity that, “The experiments which led to this advance in knowledge are worthy to rank with those that laid the foundation of the atomic laws of chemistry.” Again, “The breeding pen is to us what the test-tube is to the chemist—an instrument whereby we examine the nature of our organisms and determine empirically their genetic properties.” Here is a decided contrast of statement and yet both were justifiable at the time of utterance. For even at the writing of the first statement the investigations were in progress which, together with the rediscovery of certain older work, were to transfer our knowledge of heredity from the realm of speculation to that of experiment and disclose certain definite principles of genetic transmission. Through a knowledge of these principles in fact, the shifting of certain characters is reducible to a series of definitely predictable proportions and the skilled breeder may proceed to the building up of new and Mendel.—The principles involved are called the Mendelian principles after their discoverer, Gregor Johann Mendel, abbot of a monastery at BrÜnn, Austria. After eight years of patient experimenting in his cloister garden with plants, chiefly edible peas, he published his results and conclusions in 1866, in the Proceedings of the Natural History Society of BrÜnn. While known to a few botanists of that day, the full importance of the contribution was not recognized, and in the excitement of the post-Darwinian controversy, the facts were lost sight of and ultimately forgotten. Rediscovery of Mendelian Principles.—In 1900 three men, Correns, De Vries and Tschermak, working independently—in different countries, in fact—rediscovered the principles and called attention anew to the long-forgotten work of Mendel which they had come upon in looking over the older literature on plant Independence of Inheritable Characters.—It has been found that many truly heritable characteristics or traits of an individual, whether plant or animal, are comparatively independent of one another and may be inherited independently. Where there are contrasted characters in father and mother, such as white plumage and black plumage in fowls, smooth coat and wrinkled coat in seed, horns and hornlessness in cattle, long fur and short fur in rabbits, beard and beardlessness in wheat, albino condition and normal condition, etc., there is obviously a bringing together of the determiners of the two traits in the resulting offspring. In the third generation, however, in the progeny of these offspring, the two distinct characters may be set apart again, thus showing that in the second generation while perhaps one only was visible, the factors which determine both were nevertheless present, and moreover, they were present in a separable condition. Illustration of Mendelism in the Andalusian Fowl.—Let us take as a simple example the case of the Andalusian fowl. Although it is not a case established by Mendel it illustrates certain of the essential conditions underlying Mendelism in a more obvious way than the cases worked out by Mendel himself. The so-called blue Andalusian fowl results from a cross of a color variety of the fowl which is black with one which Fig. 16 Diagram showing the scheme of inheritance in the blue Andalusian fowl. These facts may be illustrated graphically as follows where the word “black” indicates the original black parent, “white” the original white (black splashed) parent and “blue” the hybrid offspring. The Cause of the Mendelian Ratio.—Concerning the cause of this peculiar ratio of inheritance in crossed forms Mendel suggested a simple explanation. Animals or plants that can be cross-bred, obviously must be forms that produce a new individual from the union of two germ-cells, one of which is provided by each parent. Mendel’s idea was that there must be some process of segregation going on in the developing germ-cells of each hybrid whereby the factors for the two qualities are set apart in different IN THE ORIGINAL PARENTS W × B = WB = Blue IN THE HYBRIDS
Thus of the four possible combinations one only can produce white fowls, two (WB or BW) can produce blue fowls, and one black fowls. That is, the ratio is 1:2:1 or the 25, 50 and 25 per cent., respectively, of our diagram. The black fowls or the white fowls will breed true in subsequent generations when mated with those of their own color because the determiner of the alternative character has been permanently eliminated from their germ-plasm; but the blue fowls will always yield three types of offspring because they still possess the two classes of germ-cells. Verification of the Hypothesis.—The hypothesis that germ-cells of crossed forms are of two classes with respect to a given pair of Mendelian characters is further substantiated by the following facts. If in the case of the fowls under discussion one of the blue fowls is mated with an individual of the white variety, The fact must not be lost sight of that since the pairings are wholly determined by the laws of chance the proportions are likely to be only approximate. It is obvious that the greater the number of individuals, the nearer the results will approach the expected ratio. DOMINANT AND RECESSIVE One Character May Mask the Other.—In a large number of cases, however, the actual condition of affairs is not so evident as in the Andalusian fowl, for instead of being intermediate or different in appearance, the generation produced by crossing resembles one parent to the exclusion of the other. Such an overshadowing is spoken of as dominance, and the two characters are termed dominant and recessive. Thus when brown ring-doves and white ring-doves are mated the progeny are all brown, or if wild gray mice are mated to white mice the progeny are all gray. So black is dominant to white in rose-comb bantams; brown eyes to blue eyes in man; beardlessness Segregation in the Next Generation.—But now the question arises, what do such crosses as show dominance transmit to the next generation? Experiments show regarding any given pair of these alternate characters that they are set apart again in the succeeding generation, returning in a definite percentage to the respective grandparental types. Fig. 17 Diagram showing the scheme of inheritance in guinea-pigs when black and albino forms are crossed. Dominance Illustrated in Guinea-Pigs.—In guinea-pigs for example (Fig. 17), when an individual (either male or female) of a black variety, is Analysis by further breeding shows, however, that there are in reality three types, but since dominance is complete the pure extracted dominant and the mixed dominant-and-recessive type are indistinguishable to our eye. That is, while the blacks are three times as numerous as the whites, two out of every three of these blacks are really hybrid and correspond to the blue fowls of our former example. The condition is readily comprehended when expressed diagrammatically thus: In other words, the germ-cells of the one original parent (Gen. P) would contain only determiners for black and that of the other parent would contain only determiners for white. The condition of the individuals produced by the cross would be represented by the formula B(W). But these determiners segregate in the germ-cells of the crossed form, whether it be male or female, into B and W. Hence half the spermatozoa of the male hybrid (generation F1) would carry the B determiners and half the W determiners. The pure blacks when mated together will breed true in subsequent generations, likewise the whites, but the blacks carrying white as a recessive will yield when interbred the same ratio of whites and black as did their hybrid parents (Fig. 17, p. 75). Terminology.—As work in the study of Mendelian inheritance has progressed and expanded the need of a more precise terminology has become evident and such is gradually being established. Thus Professor Bateson has coined the term “allelomorph” (Gk. one another, and form) to express more exactly what we have thus far been calling a pair of alternate or opposite characters. In the blue Andalusian fowls discussed, the white condition in the one parent is the allelomorph of the black condition in the other. The term generally means one of the pair of Mendelian characters themselves as expressed in the individual plants or animals but when the germinal basis of such phenomena is under discussion, it is sometimes used to refer to the determiners of such characters. And by determiner is meant simply the condition which is necessary in the germ to bring about the occurrence of a definite character. For example, when we are studying a cross between a red flower and a white flower with reference to the color factors, the difference between the two plants may lie in the fact that It is customary where practicable to refer to the determiner of a character by the initial letter of the name of the character. The letter when written as a capital indicates the determiner but when written as a small letter the absence of the determiner. Thus R may be taken to represent the determiner for red coloring matter and r its absence. It is convenient also to have a brief symbol to denote a given generation and for this purpose Bateson has introduced the symbol F1 for the hybrid progeny of the first cross, the initial letter of the word “filial.” F2 would indicate the next generation, F3 the third and so on. Likewise P denotes the original parent generation. The Theory of Presence and Absence.—Many, if not all, allelomorphs consist of the presence and absence respectively of a given determiner. In such cases the character represented by the presence of the determiner is dominant over the character represented by the absence of a determiner. Thus in the crosses from the wild gray mice and albino mice the progeny are all gray mice since one parent had the determiner or However, it has already been mentioned that beardlessness in wheat is dominant to beard and that the absence of horns in cattle is dominant to their presence, that is, the progeny of hornless by horned cattle are without horns except for occasional traces of imperfect horns. Facts like these would seem at first sight to contradict the assertion just made that presence is dominant to absence, but it is fairly well established that in such cases one is not dealing with true absences but with suppressions. The polled breeds of cattle, for example, are hornless not because of the absence of determiners for horns but because of the presence of an additional inhibiting factor which prevents these determiners from functioning. The horned breeds are without this inhibitor. When horned and hornless individuals are crossed the presence of the inhibitor from one line of ancestry is sufficient to suppress the development of horns in the progeny. A similar explanation would, of course, apply to beardlessness in wheat. In writing double-lettered formulÆ to denote the determiners of characters in hybrids the condition is represented merely by the capital and small letter. Thus Rr indicates that red is dominant to its absence. Additional Terminology.—In pure breeds where the determiners are alike as BB in black or bb in albino guinea-pigs, the individual is said to be a A heterozygote in which dominance prevails can be identified with certainty by breeding to a known recessive and noting the kind of offspring produced. If the individual was really a heterozygote, approximately fifty per cent. of the offspring should be of the recessive type. Dominance Not Always Complete.—As a matter of fact close inspection shows that in numerous instances dominance is not absolute since traces of the recessive character may be detectable. For example, in the cross between smooth and bearded wheat while smoothness is regarded as the dominant character and beardlessness as the recessive, nevertheless in the hybrid In some cases instead of either character dominating the other a form intermediate between the two parents may result, as we have seen already in the case of the Andalusian fowl. Thus, certain white-flowered plants and certain red-flowered plants when crossed produce pink hybrids, and longheaded and shortheaded wheats when crossed give offspring with heads of intermediate length. Or again, crosses between white and red cattle may yield red roans, and between black and white cattle, blue roans. Thus, while for such pairs of alternative characters as have been studied, dominance to some considerable degrees at least, seems to be the rule, still we have gradations down to the intermediate condition, and in some instances the hybrid with respect to a given character may be unlike either parent. The things of chief importance in the Mendelian discovery are the independent, unitary nature of the characters and their segregation in the offspring of cross-bred forms. Modifications of Dominance.—It should be noted also that there is such a condition as delayed dominance. Davenport found, for example, that chicks produced by crossing pure white with pure black Leghorn fowls are speckled black and white, but later in the adult form white becomes dominant. Likewise conditions of delayed dominance are known in man in eye-color and notably in color of hair. Some few cases have been recorded where a character is dominant at Mendel’s Own Work.—Mendel[2] himself worked out his principles on seven pairs of characters which he found in common culinary peas. Placing the dominant characters first, these may be enumerated as follows: (1) Tall by dwarf; (2) green pod (unripe) by yellow; (3) pod inflated by pod constricted between the individual peas; (4) flowers arranged along the axis of the plant by flowers bunched together at the top; (5) seed skin colored by seed skin white; (6) cotyledons yellow by cotyledons green; (7) seed rounded by seed wrinkled. He found that each pair of characters followed the same law as any other pair when more than one pair of the characters occurred in the same plants, but that each pair behaved independently of the other. The meaning of this is that we may get various combinations of characters not associated in the original pure stocks, the number of such combinations depending on the number of pairs of allelomorphs there are. DIHYBRIDS Getting New Combinations of Characters.—Since this principle is well illustrated in peas, let us take two pairs of their characters, viz., greenness and yellowness (of the cotyledons) and roundness and angularity to see exactly what happens when two pairs of Segregations of the Determiners.—How these combinations come about in this definite proportion is easily understood if the matter is expressed in terms of determiners and the possible matings tabulated (Fig. 18). If we represent the yellow determiner by Y and the green determiner by y, and likewise the determiners of roundness and angularity by R and r respectively, then the formulÆ for the determiners of these two pairs of characters in the body cells (that is, in the unreduced condition) of the pure forms and of the F1 generation hybrids respectively are as follows:
But now in the segregation of these determiners in the germ-cells of the hybrids (generation F1) the pair of determiners Rr and the pair Yy operate entirely independently of one another. Their only compulsion is that each pair be separated into the single determiners, R and r in the one case and Y and y in the other. So in the separating division which brings about this divorcement R separates from r irrespective of whether it is accompanying Y or y into the resulting daughter cell. Thus in some cases R and Y would pass into one germ-cell, in others R and y, in others r
Fig. 18 Diagram showing the possible combinations arising in the second filial generation (F2) following a cross between yellow, round (YYRR) and green, angular or wrinkled (yyrr) peas. Y, presence of factor for yellow; y, absence of such a factor; R, presence of factor for smoothness or roundness; r, absence of such a factor; ? male; ? female. Four Kinds of Gametes in Each Sex Means Sixteen Possible Combinations.—There are, therefore, with reference to the two pairs of characters under consideration, four kinds of gametes (or mature germ-cells) produced in equal numbers in each hybrid, viz., RY, Ry, rY, and ry. That is, in the first type roundness and yellowness are associated, in the second roundness and greenness, in the third angularity (lack of roundness) and yellowness, and in the fourth angularity and greenness. But since both males and females have these four kinds of gametes, when they are mated there will be sixteen possible combinations. These may be tabulated as in Fig. 18, opposite p. 84. The 9:3:3:1 Ratio.—While there are sixteen possible and equally probable combinations, these will give only nine distinct kinds because some of the matings are alike. The numbers of the various kinds of matings are as follows:
Since roundness (R) and yellowness (Y) are dominant to angularity (r) and greenness (y) in all Phenotype and Genotype.—Forms such as those represented in Nos. 1, 2, 4 and 5 which to the eye appear to be alike, regardless of their germinal constitution, are said to be of the same phenotype. Those of the same hereditary constitution, as the two individuals represented in No. 8, or the four individuals in No. 5, are said to be of the same genotype, that is, they are of identical gametic constitution. Crosses With More Than Two Pairs of Characters.—In crosses in which more than two pairs of contrasted characters are involved the underlying principles are in no way different, only with each pair of additional characters there is, of course, a greater number of possible combinations. Thus with three pairs of characters there will be eight different classes of gametes in each sex and consequently sixty-four possible combinations in mating, giving eight different phenotypes in the proportion of 27:9:9:9:3:3:3:1. The largest class manifests the three dominant characters; the smallest class, the three recessives; the three classes in the proportion of 9 each exhibit two dominant and one recessive characters; and those in the proportion of 3 each display two recessive and one dominant characters. THE QUESTION OF BLENDED INHERITANCE We come now to certain types of inheritance in which there seems to be a true fusion or blend of the contributions from the two parents, the intermediate condition apparently persisting in subsequent generations without segregation. Numerous cases of blended inheritance have been cited in earlier literature of heredity, but as our knowledge of genetics has progressed many experimental breeders have come to Nilsson-Ehle’s Discoveries.—To get their point of view we may review certain experiments on wheat made by Nilsson-Ehle, together with their Mendelian interpretation. Nilsson-Ehle found that a certain brown-chaffed wheat when crossed with a white-chaffed strain yielded a brown-chaffed hybrid, apparently in accordance with the simple principle of Mendelian dominance. But these heterozygous brown-chaffed individuals did not in turn give the expected ratio of 3:1 in the F2 generation but a ratio of 15 brown to 1 white, and furthermore the browns were not all of the same degree of brownness. To be exact, from fifteen different crosses of the strains he obtained 1,410 brown-chaffed and 94 white-chaffed plants. This apparent anomaly in segregation was easily explained, however, when it was finally figured out that there were really two independent determiners for brown color, either of which alone could produce a brown individual, but when combined produced individuals of correspondingly deeper shades of brown. In such a case then Nilsson-Ehle discovered that he was dealing merely with a Mendelian dihybrid where two different determiners B and B' and their respective absences b and b' are involved. The original brown wheat had both B and B' and the original white b and b'. The formula for the F1 heterozygote was therefore BbB'b'. The four possible types of gametes
It will be observed that there are more brown determiners in some combinations than others. For instance one of the sixteen contains four such determiners, viz., B, B', B, B', four contain three determiners, six contain two, four contain only one, and one contains none. Thus all but one of the sixteen contain at least one determiner and will therefore be brown in color but the depth of color will depend on the number of brown determiners in a given individual. This is more graphically represented in Fig. 19, p. 90. The largest number of similar individuals, six in all, contain two determiners each and represent an intermediate “blend” between the original brown-chaffed and white-chaffed strains. The deeper and the lighter browns due to more or fewer determinants in an individual would if one did not know the units in this case look like the fluctuations around this average which we might expect in a blend. Fig. 19 Diagram illustrating the proportionate distribution of determiners where either of two different determiners produces the same character, the degree of expression of the character depending on the number of the determiners present. The numerals indicate the number of brown determiners present in an individual. Nilsson-Ehle found another significant case in wheat where one particular red-grained strain of Swedish wheat when crossed with white-grained strains produced red-grained offspring, but when these were interbred the F2 generation gave approximately sixty-three red to one white-grained individual. Here it was Such Cases Easily Mistaken for True Blends.—If we should tabulate the possible combinations as we did the dihybrid we should see that we would get individuals having varying numbers of red determiners. Only one of the sixty-four possible combinations would be without a factor for red. Of the sixty-four, one would have six determiners for red, six would have five, fifteen would have four, twenty would have three, fifteen would have two, six would have one, and one would have none. Since here every additional red factor means deeper redness in the individual there would be varying degrees of redness in the F2 generation with those having three determiners, the largest group, standing apparently intermediate. Not knowing the factors involved we might easily mistake such a case for a true blend with fluctuations about an average intermediate form. Nilsson-Ehle finally proved his interpretation by rearing an F3 generation from isolated and self-fertilized plants of this F2 generation. This same principle of cumulative determiners has also been established in America by East with field corn. As the number of duplicate determiners increases it can be readily seen that the number of apparent blends of different degrees of intermediacy between the two extremes would rapidly increase. Some Investigators Would Question the Existence of Real Blends.—Still other reputed blends such as ear length in rabbits and the like have been shown to be analyzable into Mendelian behavior if one will but postulate numerous or multiple factors. Just how far we are justified in so accounting for blends has not yet been established. Some of our most careful experimentalists in heredity still believe that real blends exist, particularly where the character is quantitatively expressed—that is, as more or less of a given size or amount—while others would maintain that all alleged blends will probably be found to be resolvable into factors which follow Mendelian rule. It must be left for future investigations to demonstrate which school is correct. THE PLACE OF THE MENDELIAN FACTORS IN THE GERM-CELLS Parallel Between the Behavior of Mendelian Factors and Chromosomes.—The question arises as to whether there is any evidence from the study of germ-cells themselves to bear out the Mendelian conception of separation of contrasted characters in the gametes of the F1 generation. In the discussion of the maturation of germ-cells (Chap. II) it has already been seen that the chromosomes of the germ-cells are in all probability arranged in homologous pairs, one member being Fig. 20 Diagram showing union of factors from the two separate parents in fertilization and their segregation in the formation of germ-cells (after Wilson). With four pairs of factors (Aa, Bb, Cc, Dd), sixteen types of gametes are possible, as shown in the series of small circles at the right. The same diagram equally well represents the pairings and segregations of chromosomes. A Single Chromosome not Restricted to Carrying a Single Determiner.—It has been objected that there may be more pairs of independently heritable allelomorphic characters than there are pairs of chromosomes. It is true that there are more pairs of characters than pairs of chromosomes but there is no reason for supposing that a given chromosome is restricted to carrying a single unit-determiner. On the contrary it probably carries several or many. Some workers have pointed out that certain units might be interchanged during the pairing of chromosomes |