The soil is the greatest of our natural resources. We may almost say that it is greater than all the others combined, for from it comes all of our food; a large part of it directly as plants which grow in the soil and which we eat in the form of roots, leaves, grains, berries, fruits, and nuts; and a part of it indirectly as animals, which have received their food supply from the plants. But this is not all. The soil supplies almost every known need. We build our homes from the trees of the forest; combined with the iron that comes from the soil they furnish our fuel, our ships, our cars, our furniture, and countless other things. Our clothing is made from the cotton or flax which grows from the soil, the wool from the sheep that feed on the pastures, or from the silk-worms that feed on leaves. So it is to the earth that we turn for every need, and Mother Nature supplies it. But it is of the soil as it gives us our food supply that we shall speak in this chapter, and we must first learn the The earth's surface is constantly being renewed. Although the great formative movements occurred ages ago, yet earthquakes, volcanic action, wind, frost and water are working continual changes. Hills and mountains have been thrown up, and nature has gone to work at once to shave down the mountains and fill up the valleys. The whole earth is as carefully adjusted and balanced as the wheels of a watch, but these adjustments take place in long periods of time. In a lifetime, or even a century, the changes of the earth's surface seem few and small, but they are none the less sure. The soil or humus, that is, the upper layer of the earth's crust which is used in farming, has an average depth of about four feet, and has been formed by decay, first and most important of all by rock decay which is constantly going on under the surface of the earth and in exposed places everywhere, and is caused by the action of air and water. This process is very slow. In places where the rock is already partly ground up, or, disintegrated, as we sometimes say, it is more rapid, but the average Some waste of this upper layer is constantly taking place from above, caused by wind and floods, and considerable additions are made to it by the decay of animal and vegetable matter, but in order to keep the soil at its best, the average soil waste should not amount to more than an inch every thousand years. When this humus is once exhausted there is no way to repair the damage but to wait for the slow rock-decay. In the river valleys there is no immediate danger of exhausting the entire body of the soil, but on the hills and in the higher regions the soil-depth is very much less than four feet, and the danger of waste much more serious. There are parts of the earth that were once almost as fertile as ours where great cities once stood, but where now nothing is left but the bare rock. So we know that the end is sure, even for the life of man upon earth, unless we learn to conserve our soil. The value of our farm crops can not be overestimated. In food value they are the life of the nation; in money value, our greatest national wealth. For the year 1909 the total value of farm products was the amazing sum of $8,760,000,000. It may give some idea of this vast amount to say that if And this is all new wealth. If we build a house, we have gained the house, but the trees of which we build it are gone. The same thing is true of every article we manufacture. Something is taken from our store in the making. But after we have taken these wonderful crops from our farms the land is still there, and the soil is just as ready to produce a good crop the next year, and the next, and the next, if we treat it properly. This matter of soil conservation is of the greatest It makes a difference to the farmer whether he gets twelve bushels of wheat to the acre, or whether he gets twenty, for the cost of producing the smaller amount is just as great as the cost of producing the larger, and the extra bushels are all profit. It makes a difference whether a garden furnishes all the fruit and vegetables needed by the family, or whether it does not even pay for cultivation, and the food must be bought at high prices. It makes even more difference to the dweller in the city, who must buy all that he eats, whether food is abundant or not. If food is abundant, prices are low, but when the yield is small the demand is so great that prices become high. Not only the men, but the women and children as well, are affected by these food values, because it is from the extra money left over after the actual cost of living is taken out that the clothing, the Great as are our harvests, we are not raising much more than enough for our present needs. Each year we are using more of our food at home, and have less to export to other countries. In a few years more the public lands will all be taken, and there will be comparatively little more land than we now cultivate to supply a population that will be many times as great as at present. Men who watch the great movements of the world tell us that the time is coming before many years when there will not be food enough to supply all our people, when we shall be buying food from other countries instead of selling to them, when we shall have famine instead of plenty unless we realize the danger and at once set about to make the most of every acre of our land. James J. Hill, the great railroad builder of the Northwest, and one of the best informed men of the country on food production and the increase of population, is doing a great work in pointing out these dangers to the people on every possible occasion. Watching the great food-producing region of the country, he has noted that each year the yield per acre is growing less, and the population steadily more. He tells us that when our first census was So we can see that it is absolutely necessary that the soil be properly cared for if we are to continue to increase and prosper, for as Secretary Wilson has said, "Upon the fertility of the soil depends the whole business of agriculture." The soil is exhausted in two ways: (1) By erosion, or the carrying away of the entire soil itself. (2) By so using the soil that one or more of its principal elements are worn out. We shall consider this form of soil exhaustion first, because it more directly concerns the work of every farmer. By a fertile soil is meant one that has an abundance of plant food in the proper proportions. The The soil contains ten elements that are absorbed or assimilated by plants. These are: (1) lime, (2) magnesia, (3) iron, (4) sulphur, all of which are found in most plants in very small proportions, and are present in most soils in quantities far beyond the needs of crops for ages to come; (5) carbon, which is obtained by plants through their leaves directly from the air and the sunshine; (6) hydrogen and (7) oxygen, which are taken from the water in the soil and carried to the leaves, where they also help to take the carbon from the atmosphere. With none of these elements, then, does the farmer need to concern himself in regions where the water supply is abundant, as they are, and will continue to be, plentifully supplied by nature. But the other three, (8) nitrogen, (9) potassium, and (10) phosphorus, are needed by plants in large quantities, and are taken from the soil far more rapidly than nature can replace them. All these elements are necessary to plant life, but In the early days of farming in this country, it was the custom to grow a single crop, which had been found to give good results, year after year in the same field. In Virginia and other near-by states nearly all the best land was given every year to the cultivation of tobacco, which exhausts the soil rapidly. In the states farther north other crops were planted in the same way. As a result, some of the most fertile soil in Virginia, the Carolinas, Massachusetts, and other eastern states has been so exhausted that it is no longer worth cultivating. Everywhere throughout the New England states are to be found these worn-out farms, and, while they were never so fertile as the lands of the Mississippi Valley, each one was rich enough to support a family in comfort, with something left to sell; but because they were required to produce the same crops, and so take the same element from the soil, year after year, they have become so lacking in one of the essential elements that they are unfit for cultivation, and have been abandoned. It is wisdom and good business policy for farmers to study carefully this question of plant food and to learn what each crop is taking from the soil, so that it may be replaced. It has been found by long and careful experiments, that when land has been "single cropped," as this abuse of the land is called, for a long time, the soil has been almost entirely deprived of its nitrogen. As you know, nitrogen is one of the elements of the air, so that there is a never-ending supply, but most plants are unable to take it from the air, and until the last few years the task of replacing nitrogen in the soil was considered impossible. Recent discoveries, however, have shown that there are two ways in which it may be done. By means of electricity, nitrogen may be directly combined with the other elements of the soil. The other method is nature's own plan, and so is easier and cheaper. It has been found that while most plants exhaust the nitrogen from the soil, one class of plants, the legumes, of which beans, peas, clover, and alfalfa are the best known, have the power of drawing large stores of nitrogen from the air, and, by means of bacteria attached to their roots, restoring it to the ground. So farmers have learned that if they plant corn one year, it is wiser not to plant corn in the same field the next year, but to sow wheat, which requires less nitrogen, and the following year to sow If the soil has become worn-out and the farmer is trying to improve its general condition, he can gain better results by keeping the field in clover a second year, when a profitable crop of clover seed may be had from the land. This system of changing each year, and alternating cereal crops, which take the nitrogen from the soil, with leguminous plants, which restore it to the soil again, is called "rotation of crops," and if regularly followed will preserve a proper balance of nitrogen in the soil. In some parts of the West there is a lack of decaying vegetable matter in the soil, because the few plants which naturally grow there have small roots, and leave little vegetable material behind when they decay. For this condition one of the best crops to employ in rotation is sugar-beets, because they strike many small roots deep into the earth. As these decay, each leaves behind a tiny load of vegetable mold deep in the earth, and also makes the soil more porous. As the principal elements of the soil needed by sugar-beets are carbon and oxygen, which are absorbed from the air and sunshine, and as the beets can be sold at a good It is most important that farmers should understand the principle of rotation of crops, because nothing is taken from the soil so quickly or in such large quantities as nitrogen, and nothing is so easily put back; while, if it is not so replaced, the land becomes worthless. A comparison of the results of single cropping and the rotation of crops has been clearly shown at the Experiment Station of the Agricultural College of the State of Minnesota, where for ten years they have planted corn on one plot of ground. For the first five years it averaged a little more than twenty bushels per acre, and for the last five years, eleven bushels. On another plot, where corn was planted in rotation, the average yield was more than forty-eight bushels, the difference in average in the two plots being thirty-two bushels, or twice the value of the entire average yield on the exhausted ground. The corn grown at the end of the ten years was only about three feet high, the ears were small, and the Of the other two elements, potassium is found abundantly in most soils. It is also found in a readily soluble form in various parts of the United States and is sold at a very low price. But even if these deposits were exhausted we could still use the rocks which are very rich in potassium, and are very abundant, in a pulverized form, or potash could be manufactured from them. The only remaining element of the soil is phosphorus. This element was discovered in 1607, the year of the first English settlement at Jamestown and was first noticed because of its property of giving off light from itself. The name which was given it means light-bearer. It was at first thought to be the source of all power, to heal all diseases, and to turn the common minerals into gold. Although we have long ago learned that these ideas are absurd, yet we have also learned that its real value to man is far greater than was even dreamed of then. It is the most important element in every living thing, for no cell, however small, in either animal or vegetable organisms can grow or even live without phosphorus. It is found in the green of the leaves, and helps to make the starch. It enters Phosphorus is taken from the soil in large quantities by every kind of crop. In parts of Wisconsin which have been farmed a little more than fifty years without fertilizing, it is found that about one-third of the phosphorus has been taken out of the soil, which would mean that in one hundred and fifty years, or a hundred years from now, the soil would be incapable of producing any living thing, and long before that time the crops would not pay for the labor of producing them. Almost every acre of land that has been farmed for ten years without fertilization is deficient in phosphorus, that is, so much has been used that the soil can no longer produce at its former rate. It may be asked, if this be true, why the soil of America, which before it was cultivated had borne rich forests and fields of waving grass, has not become exhausted long ago. We must remember that nature always adjusts itself; that, In tropical regions it is not necessary to feed domestic animals at any season of the year, but in those countries where the natural food can be found only during a part of the year, the need of artificial feeding is seen at once, and it becomes a part of the regular expense of farming. It would be considered the height of folly for a man to allow his valuable animals to starve to death because of the expense of feeding them, but few people recognize the fact, which is also true, that it is equally bad business policy to allow the valuable crops of wheat, oats, and corn to starve for want of plant food. The phosphates (that is, phosphorus) are the only large items of expense, and in a large measure this may be lessened by raising live stock, for which high prices can be obtained either as meat or dairy products, and returning the manure, which contains a large amount of phosphate, to the soil. If all the waste animal products could be returned to the land, Professor Van Hise says, three-fourths of the phosphorus would be replaced. All animal The garbage of cities, when reduced to powder, yields large returns in phosphorus. It is said that if the sewage of cities, which in this country is often turned into rivers and streams, polluting them and causing disease, was reduced to commercial fertilizer, it would supply the equivalent of from six to nine pounds of rock phosphate per year for every acre of cultivated land in the United States. And this valuable product is now totally lost, and worse than lost, since it menaces the life and health of great numbers of our people. There still remain to be considered the rock phosphates, the form in which phosphorus is found in separate deposits. The only large deposits that have been used are in Florida, South Carolina, and Tennessee, and from them about two and a quarter million tons were mined in 1907. Unfortunately, however, there is no law that prevents its export from this country, and almost half of this found its way to Europe, where it is eagerly sought at high prices. Within a short time valuable phosphate beds, more extensive than any before known to exist in this country, have been discovered in Utah, Wyoming, and Idaho. Professor Van Hise, who is one The other great waste of the soil is by erosion, or the wearing away of the soil by stream-flow. We can all see this in a small way by wandering along the shore of any swift-running stream and noticing how the banks are worn away, and what deep gullies and ravines are cut into them by the water running down from the fields above. Another way in which we can observe the effect of this waste is by noticing the muddy yellow color of streams during floods and after heavy rains, and comparing it with the clear blue of the same stream at ordinary times. When we realize that this muddy color always means that the water is filled with soil, all that it will hold in solution, that it is carrying away the top soil, which is best for agriculture, and, finally, that every little streamlet and creek, as well as the mightiest river, is carrying this rich soil-deposit downward toward the sea in its flow, we begin to The Missouri River, which drains a large area of wheat and corn land, is notable as a muddy, yellow river at almost all seasons. Do you understand what that means? It means that this great productive region is growing poorer each year, and that as the population increases, and the need of great harvests increases, the land is becoming less able to produce them. The Mississippi River is said to tear down from its banks more soil each year than is to be dredged from the Panama Canal. At the mouth of the river is a delta many miles in extent, formed wholly of land that has been carried down the river. The soil in lower Mississippi and Louisiana is almost black, and is in many places seventy feet in depth, and it has all been left there by the river, which took it from the higher lands. It is estimated that our rivers carry out to sea one billion tons of our richest soil each year. The ancient Egyptians worshiped the Nile because each year the spring floods left behind the rich soil deposits that fertilized their fields and gave them an abundant harvest. Entire fields and even whole farms along the upper stretches of the Mississippi and Missouri have been carried away, not the top soil only, but the land itself, by the swift current Canaan, the "land of promise" of the Bible, was once an abundant region, "flowing with milk and honey" in the language of Moses, with its grapes, its vast forests of cedar, fir, and oak, its treasures of wheat, olive-oil, and other rich agricultural products. Now all are gone. The entire country seen by the traveler in the Holy Land to-day is one of the most desolate regions on the globe, where the few inhabitants are scarcely able to obtain a scanty living. We wonder what has brought about this change, and we have not far to seek in answer to our questioning. The preservation of the forests means the preservation of the soil, and the destruction of the forests means the destruction of the soil. This is the universal law. First the forests were cut down and the hillsides left bare. Then the streams wore great ravines down the unprotected hillsides. Steadily the work of destruction by erosion has gone on, until time beyond our possibility to comprehend must pass before the land can be made productive again. The hills and valleys of China have been devastated in the same way, and many of the older regions of the earth that were once the sites of great cities and extensive commerce are now marked only by the ruins of the civilization In the days of Rome's greatness, Sicily was known as "the granary of Rome" because from this little island came the grains to supply her vast armies. 12,000,000 bushels of grain was the tribute that Rome claimed of Sicily each year, and yet Sicily had enough left to make her rich. She built splendid cities and became great. But the same story of destruction is to be read in the history of Sicily. Now the entire island does not raise a million and a half bushels of wheat altogether. The soil is barren. The cities have nearly all fallen into ruin. The people are scattered. Thousands have come to America, seeking a poor living at the lowest wages because at home there was no chance to earn even the little they require. They allowed the soil to become exhausted by lack of fertilization and by erosion and it long ago ceased to support the people. All the rest followed naturally. In many parts of our own country this same danger is coming on us. It is only the beginning, but the end is as sure for us as for those far-off Eastern countries. Millions of acres have already been destroyed in the East and South. The Appalachian mountain system lies not far from the coast, and the rivers on the eastern slopes are short and swift. In order to understand exactly how the damage is done to the land, let us suppose a case which has actually occurred in hundreds of places. A farmer owned a farm on the mountain side. Much of it was good wheat land, but the top was covered with forests. At last he decided to cut and sell the timber, and use the land for raising more wheat. As the water penetrated deeper, the soil became softened, and was carried away down the hillside. It was only a muddy little stream, but it took away some of the richest soil from the fields, and the next year's crop was not quite so good. Every rain that fell carried more of the fertile soil down the hillside, and the next year the farmer wondered that the yield was still less. After a few years he ceased to sow the field because it had never paid for its cultivation, and was constantly growing poorer. But it was too late then to repair the damage that had been done. There were no seeds of forest trees left in the ground and the farmer did not plant them, so the ground lay idle and desolate. The rain wore deep gullies down the hillside, which, as they grew larger, became more of a menace to the lands below them. The streams soon grew large enough to take the top-soil from the fields lower down, and in a few years more the whole farm had grown so unproductive that the farmer, tired of the struggle, left the farm and went to the city to make a living. In the meantime the land in the valley below had been growing more fertile, for each year the spring floods had left a rich soil deposit behind them. The farmer down there had been innocently stealing the land above him, but not all of it, for much had been carried out to sea. It is not possible to prevent this entirely, but much of the loss might have been avoided by leaving the hilltops, which are never well fitted for cultivation, covered with forests. In this way the soil-wash from above is prevented and the streams run gently and with only a small amount of muddy deposit, forming proper drainage for the soil. The preserving of the forests on the great mountain ranges of the country, where nature has placed them, will mean in the one matter of soil-wash, fruitful lands and bountiful harvests, instead of barren, wasted lands, desolated by floods and seamed by great ravines, carrying desolation to the lands below them. But in many cases the trees are already cut away. Here replanting becomes necessary and should be done in every case where soil-wash is beginning on the mountain tops. It is almost equally desirable to plant small shrubs and bushes as an undergrowth, so that the roots may form a thick mat below the ground to hold the water in the soil, and permit it to filter through slowly. In Massachusetts, the tracks of the Boston and Albany Railroad are depressed so that trains may pass below the level of the highways. In order to protect the banks from erosion, the sloping sides of this roadway have been planted with trailing rose-bushes and other vines which have thickly matted roots. These serve a double purpose in preventing landslides and washouts on the tracks, and in adding greatly to the attractiveness of the scenery along the railway. The poorest land of a farm is always found on the hilltops, because even with the greatest care there is always considerable waste of the top-soil. This land, then, should never be used for field crops. It should constitute the woodland, or if this is not possible, the pasture-land of the farm, for the grass roots protect the soil and prevent it from washing away, and the profits on the hay are at least as great as any other crop which could be grown on hill land. But when erosion has been checked and the top-soil preserved, when the soil is thoroughly fertilized, and a proper rotation of crops established, there are still other lessons to be learned in order to make our country as productive as it might be, as it will need to be to support the population that we shall have by the end of the century. As a nation we undertake to farm too much A man often only expects to make a comfortable living on one hundred and sixty acres of land, while in Europe he would expect to grow rich on two or three acres. It is often said that a French family would live off of an American farmer's neglected fence-corners. In France, in England, in Holland and Belgium every bit of land is tended and made useful. We have the best natural soil in the world, the most fertile river valleys, watered by abundant rains. The fertility of our lands is the envy of the civilized world, and has drawn thousands to our shores in the hope of finding comfort and plenty, and yet the total value of our farm products was only eleven dollars and thirty-eight cents per cultivated acre according to the last census, while in the little island of Jersey, just off the English coast, the average annual value of products is over two hundred and fifty dollars per acre. Germany has been cultivated nearly eighteen hundred years, the soil is not naturally so productive nor the climate so favorable as ours, but the wheat yield there averages more than twice as much as in this country. When the most fertile land in the world produces so much less than poorer lands elsewhere it plainly shows that we are robbing the soil in order to get the largest cash returns in the shortest possible time and with the least possible labor. The American farmer needs to cultivate a much smaller amount of land thoroughly, to have a soil analysis made of his land in order to know what crops are best suited to it and what elements are lacking to make it produce the best. In Illinois more than half a million acres had become unfit for cultivation. Analysis showed that the soil was too acid. By mixing limestone dust with the soil the trouble was corrected and the land reclaimed. Often it is only necessary to find the cause of some deficiency, or lack, in the soil, and the remedy will be found to be simple and cheap, while the result of its use will be to double the crop. Nothing else so quickly and easily responds to proper treatment, no other resource is so easily conserved. All the soil needs is proper treatment. Every bit of waste land should be cultivated for either use or beauty, or both. If all the lanes and neglected places could be planted with fruit and nut trees, berry vines, and bushes, herbs or flowers which need little cultivation after they are planted, our food, in variety and quantity, would be greatly increased. "The hedge-rows of Old England" Another thing that should be considered is the marketing of farm products. Near a city or near a canning factory the soil can be most profitably used for the raising of vegetables, for which the cost of cultivation is great, but which yield far larger profits than farm crops. Within the last few years a new system of farming has been developed in the West, which is of great interest to all of us, both because it is opening up for production a large part of our country that has seemed valueless, and because the lessons that have been learned there are of the greatest advantage in every part of the country. West of the one-hundredth meridian, which crosses North and South Dakota, the western part of Nebraska, Kansas, Oklahoma, and Texas, and including the states west of them, lies a vast region that used to be known as the "great American desert." It comprises almost half of the United States. Here the noble forests of the eastern states and the prairie grasses of the plains were replaced by sage-brush and cactus. The soil was light in color and weight, and the rainfall very scanty. It seemed impossible that it could ever be fitted for agriculture. But there were a few great rivers, rich mining districts, and excellent grazing lands. These attracted settlers, and to them some cultivation of the soil became almost a necessity. The waste waters of the rivers were used for irrigation and the land when watered was found to produce remarkably fine fruits and agricultural products. Yet there were hundreds of thousands of acres that could not be irrigated for lack of water, and the problem of finding a use for these barren, semi-arid lands remained unsolved for many years. But here and there in different states and under varying conditions, after many experiments and failures, men began without water to grow successful crops on these semi-arid lands, where the rainfall was scarcely more than ten inches per year. Others following this method found success, and it began to seem possible that all this territory might some day become a great farming region. By comparing the methods employed in different states, the few general laws have been worked out which must be applied in order to farm successfully in this region, though the details differ with local differences in altitude, climate, soil, and rainfall. Here farming is being reduced to a science. In other parts of the country a man sows his seed and nature cares for it, and gives him his harvest; This system is usually called "dry farming," though "scientific farming" would perhaps be a better name, for the same principles that are absolutely necessary here will greatly increase the yield anywhere. The most important principle is to conserve every particle of moisture in the soil. It is necessary to go deep into the soil to find the underlying moisture. The seed-bed is made very deep. Plowing is from sixteen to nineteen inches deep, while in well-watered regions it is only about six inches. This deep seed-bed is thoroughly cultivated to make the soil porous, the soil being reduced to a fine powder. After sowing the seed, the ground is packed as solidly as possible. This is done by especially designed machines. The surface of the soil is kept broken all the time to prevent the escape of the moisture. This rule applies equally to all soils in dry weather, and will often save a crop of corn in any part of the country during a drought. These are simple rules, but the practice of them is opening up the great semi-arid regions, not of the United States only, but of the whole earth. Western Canada, a large part of Australia, the Kalahari Desert of Africa, and many parts of Asia, which It must be remarked that the grains of the East could not withstand the severe winters in a large part of the Northwest, so the Department of Agriculture sent men all over the world to find drought-and-cold-resisting grains. They found a hard winter wheat, the most nutritious in existence, which is now growing all the way from the Dakotas to the Pacific Ocean, producing crops far above the yield of the eastern states. 50,000,000 bushels of this wheat was raised in 1907. The soil is the natural disintegrated rock, rich in the mineral elements, but lacking in decayed vegetable matter. The crops soon exhaust the nitrogen, and as clover and the common alfalfas can not grow there, the problem of finding legumes has been the most serious one facing this new region; but in Siberia the Agricultural Department has recently found a new clover and three varieties of alfalfa that will stand the cold, and Secretary Wilson believes that these will solve the problem. Every acre brought under cultivation adds to the world's food supply. Can we even dream of what it will mean when 200,000,000 acres are added to the farm lands of this continent? It means prosperity for the farmers themselves, homes for those who are now crowded in cities, work for REFERENCESLands. Report National Conservation Commission. Soil Wastage. Chamberlain. Report White House Conference of Governors. Conservation of Soils. Van Hise. (Same.) Commercial Fertilizers. Dept. of Agriculture Bulletin, 44. The Liming of Soils. Dept. of Agriculture Bulletin, 57. Renovation of Worn-out Soils. Dept. of Agriculture Bulletin, 245. Soil Fertility. Dept. of Agriculture Bulletin, 257. Management of Soils to Conserve Moisture. Dept. of Agriculture Bulletin, 266. Fertilizers for Cotton Soils. Bureau of Soils Bulletin, 62. Work of the Bureau of Soils. Bureau of Soils Bulletin. Exhaustion and Abandonment of Soils. Bureau of Soils Bulletin. Whitney, 5c. Phosphorus. Illinois Agricultural Experiment Station Bulletin. The Present Status of the Nitrogen Problem. Yearbook Dept. of Agriculture Reprint, 411. The Search for Leguminous Forage Crops. Yearbook Dept. of Agriculture Reprint, 478. Leguminous Crops. Yearbook Dept. of Agriculture Bulletin, 278. Progress in Legume Inoculation. Yearbook Dept. of Agriculture Bulletin, 315. A Grain for Semi-arid Lands. Yearbook Dept. of Agriculture Bulletin, 139. The Sugar-Beet. Yearbook Dept. of Agriculture Bulletin, 52. Dry-Land Problems in the Great Plains Area. Yearbook Dept. of Agriculture Reprint, 461. Reports of Dry Farming Congress. The Natural Wealth of the Land. J. J. Hill, Report Governor's Conference. National Wealth and the Farm. J. J. Hill. |