Glaciers are rivers of ice, and, like other rivers, some of them are small and some very large. They flow down the gorges from high mountains, whose peaks are always covered with a blanket of eternal snow. Summer and winter the snow is precipitated upon these mountains, and from time to time the heat of the sun's rays softens the snow, when by its great weight it packs more closely together until it is, in many cases, formed into solid ice-cakes. If we take a quantity of snow or a quantity of granulated ice and put it under a sufficient pressure we can produce clear solid ice, and it is by this process that ice is formed out of the snow and hail that falls continually upon the tops of these glacial mountains. We have seen that ice possesses certain viscous or semi-fluidic properties and that it will yield to pressure, but if we put it under sufficient tensional strain it snaps like glass or any other brittle substance. As the snows upon these mountains pile up higher and higher the pressure becomes greater and greater until it reaches a point where the mass begins to move At the sides and bottom, where there is contact with the earth, the movement is slower than it is at the surface and in the middle of the ice stream. If there were no curves in the ravine or gulch through which it flows the point of greatest movement would be confined to the middle of its width. But in flowing through a winding gulch the most rapid flow follow the lines of greatest pressure, and this line is deflected from side to side, so that the line of greatest flow is more winding than is the bottom of the valley through which it flows. (The movement is called a "flow," but it is very sluggish, only a few inches in a day, as will appear later.) If the bottom and sides of the valley were straight the surface of the ice would be comparatively even; I say comparatively, for as compared with a smooth surface it would be very rough; but there would be none of the great crevasses or openings now to be found in the ice, which sometimes are very large and extend to a great depth. If in its downward course the bottom of the ravine suddenly becomes steeper, the top of the ice is put under a tensional strain which causes it to break, thus forming the crevasses. If at the bottom of the descent the valley The glacier continues its flow down the mountain side till in some cases it reaches quite to the valley below, and in others it stops short, as the action of the sun is so great that it melts entirely away at this point as fast as it moves down. In the winter time, however, the glacier may flow far down into the valley and will accumulate greatly in bulk, owing to the fact that the ice forms from the precipitation of snow on top faster than it melts away underneath. If it were not for the fact that in summer the glaciers melt faster than they form, the whole valley would in time become a great river of ice. It is the case in Switzerland that some years the accumulation is greater from snowfall than diminution from melting. If this condition should continue it would become a serious matter. In the downward flow of a glacier—slow as it is—there is an exhibition of wonderful power; great bowlders are torn from their beds and either ground to powder or carried down It was the privilege of the writer some years since to visit the great glaciers of Switzerland and to some extent study their action. Some rivers have their origin chiefly in melting glaciers. They start as ice rivers and end in rivers of water. The effects during the great ice age of some of these glacial rivers, which are now extinct, are very remarkable; we shall have occasion to refer to them when we come to treat of the glacial period. There is a glacial river flowing which is fed largely by the great Rhone glacier in Switzerland. The water from this river is almost as white as milk, which is occasioned by the grinding action of the great ice blocks on the rock as it flows down the sides of the mountain. These glacial rivers are much higher in summer, of course, than in winter, some of them having not only an annual fluctuation, but a diurnal one. The former is caused by the cold of winter, and the latter because it freezes to some extent at night and checks the flow of water. The difference between day and night in these high altitudes is very marked. While it is extremely hot in the sun, it is cool the moment we step into the shade. I remember walking across one of the glaciers in the Alps, called the Mer de Glace, one clear day in summer, when I suffered so much from the heat, although standing upon a sea of ice, that it was necessary to carry an umbrella. In fact, during my stay there was a case of sunstroke that occurred upon this same glacier. This intense heat during the day melts the surface of the ice, which forms streams that run along on the top of a glacier until they come to a crevasse or riffle in the ice river, where they plunge down and become a part of the glacial stream that is flowing underneath the ice. The speed at which these ice streams flow varies greatly with the size of the glacier as to width and depth and the steepness of the grade, and many other conditions. In its movement the glacier is constantly bending and freezing and being torn asunder by tensional strain, yielding and liquefying at other points by pressure, only to freeze again when that pressure is removed. This, taken in connection with the friction of the great ice bowlders, produces a movement that is exceedingly complicated in its actions and interactions. According to Professor Tyndall's investigations, the most rapid movement observed in the glaciers of Switzerland is thirty-seven inches per day at the point of greatest movement. The great North American glaciers move at a much higher rate of speed. We are indebted to Dr. G. Frederick Wright, author of "The Ice Age in North America," who spent a month studying the Muir glacier in Alaska, for many details concerning that great ice river. This glacier empties into Muir Inlet, which is an offshoot of Glacier Bay. It is situated in latitude 58 degrees 50 minutes and longitude 136 degrees 40 minutes west of Greenwich. The bay into which this glacier empties is about thirty miles long and from eight to twelve miles wide. This bay, with its great glacier, has a setting of grand mountain peaks. I cannot do better than to quote the words of Dr. Wright when he describes the location of this glacier. Dr. Wright lived for a month in a tent on the edge of this bay, a short distance below the face of the great glacier, where the icebergs fell off every few minutes into the deep water. He says: "To the south the calm surface of the bay opened outward into Cross Sound twenty-five miles away. The islands dotting the smooth surface of the waters below us seemed but specks, and the grand vista of snowclad mountains guarding either side of The Muir glacier might be likened to a great inland sea of ice fed by many tributaries or ice rivers. It narrows up at the point where it empties into Muir Inlet to 10,664 feet, or a little over two miles. An enormous pressure is exerted at this point, which causes the ice to flow in the central portion at the rate of about seventy feet per day. There is a continual booming, like the firing of a cannon, going on, caused by the bursting of some great iceberg either before it takes its final leap into the water or at the moment of its fall. At the point where these great icebergs drop off into the water they stand like a solid wall 300 feet above its surface. Dr. Wright says: "From this point there is a constant succession of falls of ice into the water, accompanied by loud reports. Scarcely ten minutes, either night or day, passed during the whole month without our being startled with such reports; and frequently they were like thunder claps or the booming of cannon at the bombardment It is estimated that the cubical contents of some of these icebergs are equal to 40,000,000 feet. This great glacier is fed by the constant precipitation of snow upon the sides and peaks of the high mountains that surround its vast amphitheater, which is floored with icebergs. Wonderful as this seems to us to-day, it is scarcely a microscopic speck of what existed during the ice age all over the northern part of North America. There are many other great glaciers in the mountains of the Pacific coast. Some years ago I saw one of these immense glaciers in British Columbia, from a point called Glacier Station, in the Selkirk Mountains, on the Canadian Pacific Railroad. It was during the month of August, when all of the region was pervaded by a dense smoke occasioned by burning forests. This glacier is a very showy one, owing to the steepness of the side of the mountain and its great breadth. All the glaciers that exist to-day are gradually receding, |