CHAPTER VIII. ATMOSPHERIC ELECTRICITY.

Previous

Nature has another mode of generating electricity, called atmospheric. The normal conditions of potential between the earth and the upper atmosphere seem to be that the atmosphere is positively electrified and the earth negatively. These conditions change, apparently from local causes, for short periods during storms. In some way the sun's rays have the power directly or indirectly to give the globules of moisture in the air a potential different from that of the earth.

In clear weather we find the air near to the earth in a neutral condition, but gradually assuming the condition of a positive charge as we ascend; so that the upper air and the earth are oppositely charged like the two sides of a Leyden jar or two leaves of a condenser. This condition is intensified and localized when a thunder-cloud passes over the earth. The moisture globules have been charged with potential energy by the power of the sun's rays when evaporation took place; but in this state the energy is neither heat nor electricity, but a state of strain like a bent bow or a wound-up spring. When these moisture globules condense into drops of water the potential energy is set free and becomes active either as heat or electricity. The cloud gathers up the energy into a condensed form, and when the tension gets too great a discharge takes place between the cloud and the earth or from one cloud to another, which to an extent equalizes the energy.

In most cases of thunder and lightning it is only a discharge from cloud to cloud unequally charged. This does not relieve the tension between the earth and the cloud, but distributes it over a larger area. The reason for this constant electrical difference between the earth and the upper regions of atmosphere is not well understood, except that primarily it is an effect of the sun's rays. Evaporation may and probably does play a part, and the same causes that give rise to the auroral display may contribute in some way to the same result. Evaporation does not always take place at the earth's surface. Cloud formations may be evaporated in the upper air into invisible moisture spherules, and charged at the time with potential energy. If we go up into a high mountain when the conditions are right, we can witness the effect of this condition of electrical charge or strain between the upper regions of the atmosphere and the earth, and the tendency to equalize the potentials between the clouds and the earth. Often one's hair will stand on end, not from fright, but from electricity passing down from the upper regions to the earth. When the tension is very great a loud hissing sound as of many musical tones of not very good quality may be heard, and a brush or fine-pointed radiation of electricity may be seen from every point, even from your finger-ends. The thunder is not usually so loud on high mountains for two reasons—one because the air is rare, but the chief reason is that the mountain acts as a great lightning-rod and gradually discharges the cloud or atmosphere, for often the phenomena may occur when the sky is clear.

I remember being on top of what is called the Mosquito Range, between Alma and Leadville in Colorado, during the passage of a thunder shower. There was no heavy thunder, but a constant fusillade of snapping sounds, accompanied by flashes not very intense. I could feel the shocks, but not painfully. A part of the time I was in the cloud and became for the time being a veritable lightning-rod. After the cloud passed it crawled down the mountainside as if clinging to it, all the time bombarding it with little electric missiles. After the cloud left the mountain and passed over the valley I could hear loud thunder, because the charge would have to accumulate quite a quantity, so to speak, before it could discharge. These heavy discharges when the cloud is some distance from the earth would be dangerous to life, while the light ones, when the cloud is in contact with the earth, are not.

Many wonderful and destructive effects come from these lightning discharges and many lives are lost every year from this cause. I do not suppose it is possible to be on one's guard continually, but many lives are needlessly lost either from ignorance or carelessness. Although there is a just prejudice against lightning-rods as ordinarily constructed, it is still just as possible to protect your house and its inmates from the destroying effects of lightning as from rain. If, for instance, we lived in metal houses that had perfect contact all round them with moist earth, or better, with a water-pipe that has a large surface contact with the earth, the lightning would never hurt the house or the inmates. In such a case you simply carry the surface of the earth to the top of your house, electrically speaking, and neutralization takes place there in case the lightning strikes the house. A house that is heated with hot water can easily be made lightning-proof by a little work at the top and bottom of the heating system. All the heavy metal of the house should be a part of the lightning-rod. Points should be erected at the chimneys, and if there is a metal roof they should be connected with it. Then connect the roof with rods from several points with the ground. Here is where most rods fail. The ground connection is not sufficient. The earth is a poor conductor, and we have to make up by having a large metal surface in contact with it. It is best to have the rod connected with the water pipe, if there is one, and have it connected with metal running all around the house as low down as the bottom of the cellar, for sometimes there is an upward stroke, and you never can tell where it is coming up. If you have a heating system it should be thoroughly grounded and the top pipe connected with the rods at the chimneys. These rods need not be insulated as is the usual practice.

If you are outdoors during a thunder-storm never get under a tree, but if you are twenty or thirty feet away it may save your life, because, if it comes near enough to strike you, it will probably take the tree in preference. It seeks the earth by the easiest passage. An oil-tank and a barn are dangerous places, if the one has oil in it and the other is filled with hay and grain. A column of gas is rising that acts as a conductor for lightning. Of course if the barn is properly protected with rods it will be safe. Sometimes a cloud is so heavily charged that the lightning comes down like an avalanche, and in such a case the rods must have great capacity and be close together to fully protect a building.

There is a popular notion that rods draw the lightning and increase the damage rather than otherwise. This is a mistake. Points will draw off electricity from a charged body silently. It would be possible to so protect a district of any size in such a way that thunder would never be heard within its boundaries if we should erect rods enough and run them high enough into the upper air. The points—if they were close enough together—would silently draw off the electricity from a cloud as fast as it formed, and thus effectually prevent any disruptive discharge from taking place.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page