CHAPTER V. THEORY OF ELECTRICITY.

Previous

In the series of chapters on Heat (Vol. II) and in the chapter on Magnetism the word molecule was frequently used synonymously with atom. In chemistry a distinction is made, and as we can better explain the theory, at least, of electricity by keeping this distinction in mind we will refer to it here.

It has been stated that there are between sixty and seventy elementary substances. An elementary substance cannot be destroyed as such. It can be united with other elements and form chemical compounds of almost endless variety. The smallest particle of an elementary substance is called in chemistry an atom. The smallest particle of a compound substance is called a molecule. The atom is the unit of the element, and the molecule is the unit of the compound as such. It follows, then, that there are as many different kinds of atoms as there are elements, and as many different kinds of molecules as there are compounds. If the elements have a molecular Structure then two or more atoms of the same kind must combine to make a molecule of an elementary substance. Two atoms of hydrogen combine with one of oxygen to form one molecule of water. It cannot exist as water in any smaller quantity. If we subdivide it, it no longer exists as water, but as the original gases from which it was compounded.

We have shown in the series on Sound, Heat and Light that they are all modes of motion. Sound is transmitted in longitudinal waves through air and other material substance as vibration. Heat is a motion of the ultimate particles or atoms of matter, and Light is a motion of the luminiferous ether transmitted in waves that are transverse. Electricity is also undoubtedly a mode of motion related in a peculiar way to the atoms of the conductor.

Notice that there is a difference between conduction and radiation. The former transmits energy by a transference of motion from atom to atom or molecule to molecule within the body, while the latter does it by a vibration of the ether outside—as light, radiant heat, and electromagnetic lines of force.

For the benefit of those persons who have not read Vol. II, where the nature of ether is discussed somewhat, let us refer to it here, as it plays an important part in the explanation of electrical phenomena. Ether is a tenuous and highly elastic substance that fills all interstellar and interatomic space. It has few of the qualities of ordinary matter. It is continuous and has no molecular structure. It offers no perceptible resistance, and the closest-grained substances of ordinary matter are more open to the ether than a coarse sieve is to the finest flour. It fills all space, and, like eternity, it has no limits. Some physicists suppose—and there is much plausibility in the supposition—that the ether is the one substance out of which all forms of matter come. That the atoms of matter are vortices or little whirlpools in the ether; and that rigidity and other qualities of matter all arise in the ether from different degrees or kinds of motion.

Electricity is not a fluid, or any form of material substance, but a form of energy. Energy is expressed in different ways, and, while as energy it is one and the same, we call it by different names—as heat energy, chemical energy, electrical energy, and so on. They will all do work, and in that respect are alike. One difficulty in explaining electrical phenomena is the nomenclature that the science is loaded down with. All the old names were adopted when electricity was regarded as a fluid, hence the word "current." It is spoken of as "flowing" when it does not flow any more than light flows.

If a man wants to write a treatise on electricity—outside of the mere phenomena and applications—and wants to make a large book of it, he would better tell what he does not know about it, for in that way he can make a volume of almost any size. But if he wants to tell what it really is, and what he really knows it is, a primer will be large enough. This much we know—that it is one of many expressions of energy.

Chemistry teaches that heat is directly related to the atoms of matter. Atoms of different substances differ greatly in weight. For instance, the hydrogen atom is the unit of atomic weight, because it is the lightest of all of them. Taking the hydrogen atom as the unit, in round numbers the iron atom weighs as much as 56 atoms of hydrogen, copper a little over 63, silver 108, gold 197. Heat acts upon matter according to the number of atoms in a given space, and not as its weight. Knowing the relative weights of the atoms of the different metals named, it would be possible to determine by weight the dimensions of different pieces of metal so that they will contain an equal number of atoms. If we take pieces of iron, copper, silver and gold, each of such weight as that all the pieces will contain the same number of atoms, and subject them to heat till all are raised to the same temperature, it will be found that they have all absorbed practically the same quantity of heat without regard to the different weights of matter. It will be observed that the piece of silver, for instance, will have to weigh nearly twice as much as the iron in order to contain the same number of atoms, but it will absorb the same amount of heat as the piece of iron containing the same number of atoms, if both are raised to the same temperature. In view of the above fact it seems that heat acts especially upon the atoms of matter and is a peculiar form of atomic motion. Heat is one kind of motion of the atoms, while electricity may be another form of motion of the same. The two motions may be carried on together. The earth has a compound motion. It revolves upon its axis once in twenty-four hours, and it also revolves around the sun once each year. So you see that there are different kinds of motion that may be communicated to the same body—all producing different results.

The motion of the individual atom as heat may be, and is, as rapid as light itself when the temperature is sufficiently high, but it does not travel along a conductor rapidly as the electro-atomic motion will. If we apply heat to the end of a metal rod it will travel slowly along the rod. But if we make the rod a conductor of electricity it travels from atom to atom with a speed nearer that of the light ray through the ether. Some modern writers have attempted to explain all the phenomena of electricity as having their origin in a certain play of forces upon the ether, and there is no doubt but that the ether plays an important part in all electrical phenomena as a medium through which energy is transferred; but ether-waves that are set in motion by the electrical excitation of ordinary matter are no more electricity than the ether-waves set up by the sun in the cold regions of space are heat. They become heat only when they strike matter. Heat, as such, begins and ends in matter;—so (I believe) does electricity.

Do not be discouraged with these feeble attempts to explain the theory of electricity. All I even hope to do is to establish in your minds this fundamental thought, to wit, that there is really but one Energy, and that it is always expressed by some form of motion or the ability to create motion. Motions differ, and hence are called by different names.

If I should set an emery-wheel to revolving and hold a piece of steel against it the piece of steel would become heated and incandescent particles would fly off, making a brilliant display of fireworks. The heat that has been developed is the measure of the mechanical energy that I have used against the emery-wheel. Now, let us substitute for the emery-wheel another wheel of the same size made of vulcanized rubber, glass or resin. I set it to revolving at the same speed, and instead of the piece of steel, I now hold a silk handkerchief or a catskin against the wheel with the same force that I did the steel. If now I provide a Leyden jar and some points to gather up the electricity that will be produced (instead of the heat generated in the other case), it would be found that the energy developed in the one case would exactly balance that of the other, if it were all gathered up and put into work. The electricity stored in the jar is in a state of strain, like a bent bow, and will recoil, when it has a chance, with a power commensurate with the time it has been storing and the amount of energy used in pressing against the wheel.

If now I connect my two hands, one with the inside and the other with the outside of the jar, this stored energy will strike me with a force equal to all the energy I have previously expended in pressing against the wheel, minus the loss in heat. If I did it for a long enough time this electrical spring would be wound up to such a tension that the recoil would destroy life if one put himself in the path of its discharge. If all the heat in the first case were gathered up and made to bend a stiff spring, and one should put himself in its way when released, this mechanical spring would strike with the same power that the electrical spring did when the Leyden jar was discharged. This statement assumes that all the energy in the second experiment was stored as electricity in the jar. You will be able to see from the above illustration that heat, electrical energy, and mechanical energy are really the same. Then you ask, how do they differ? Simply in their phenomena—their outward manifestations.

While there is much that we cannot know about any of the phenomena of nature, it is a great step in advance if we can establish a close relationship between them. It helps to free electricity from many vagaries that exist in the minds of most people regarding it; vagaries that in ignorant minds amount to superstition. While it possesses wonderful powers, they give it attributes that it does not possess. Not long ago a favorite headline of the medical electrician's advertisement was "Electricity Is Life," and it was a common thing to see street-venders dealing out this "life" in shocking quantities to the innocent multitudes—ten cents' worth in as many seconds.

Science divides electricity into two kinds—static and dynamic. Static comes from a Greek word, meaning to stand, and refers to electricity as a stationary charge. Dynamic is from the Greek word meaning power, and refers to electricity in motion. When Franklin made his celebrated kite experiment, the electricity came down the string, and from the key on the end of the string he stored it in a Leyden jar. While the electricity was moving down the string it was dynamic, but as soon as it was stored in the Leyden jar it became static. Current electricity is dynamic. A closed telegraphic circuit is charged dynamically, while the prime conductor of a frictional electric machine is charged statically. The distinction is arbitrary and in a sense a misnomer. When we rub a piece of hard rubber with a catskin it is statically charged because the substances are what are called non-conductors, and the charge cannot be conducted readily away. All substances are divided into two classes, to wit, conductors or non-electrics, and non-conductors or electrics, more commonly called dielectrics. These, however, are relative terms, as no substance is either a perfect conductor or a perfect non-conductor.

The metals, beginning with silver as the best, are conductors. Ebonite, paraffine, shellac, etc., are insulators, or very poor conductors. The best conductors offer some resistance to the passage of the current and the best insulators conduct to some extent. If we make a comparison of electric conductors we find that the metals that conduct heat best also conduct electricity best. This, it seems to me, is a confirmation of the atomic theory of electricity so far as it means anything. If a good conductor, as silver, is subjected to intense cold by putting it into liquid air, its conductivity is greatly increased. It is well known that heating a conductor ordinarily diminishes its power to conduct electricity. This shows that, in order that electrical motion of the atom may have free play, the heat motion must be suppressed.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page