Title: Darwiniana Essays and Reviews Pertaining to Darwinism Author: Asa Gray Edition: 10 Language: English Produced by Dave Gowan <dgowan@bio.fsu.edu> DARWINIANAESSAYS AND REVIEWS PERTAINING TO DARWINISMBY ASA GRAY FISHER PROFESSOR OF NATURAL HISTORY (BOTANY) IN HARVARD UNIVERSITYNEW YORK: 1876. CONTENTSDARWINIANAPREFACEARTICLE ITHE ORIGIN OF SPECIES BY MEANS OF NATURAL SELECTIONViews and Definitions of Species—How Darwin's differs from that of Agassiz, and from the Common View—Variation, its Causes unknown.—Darwin's Genealogical Tree—Darwin and Agassiz agree in the Capital Facts—Embryology—Physical Connection of Species compatible with Intellectual Connection—How to prove Transmutation.—Known Extent of Variation—Cause of Likeness unknown—Artificial Selection.—Reversion—Interbreeding—Natural Selection.—Classification tentative.—What Darwin assumes.—Argument stated.—How Natural Selection works.—Where the Argument is weakest.—Objections—Morphology and Teleology harmonized.—Theory not atheistical.—Conceivable Modes of Relation of God to Nature ARTICLE IIDESIGN VERSUS NECESSITY— A DISCUSSIONHow Design in Nature can be shown—Design not inconsistent with Indirect ARTICLE IIINATURAL SELECTION NOT INCONSISTENT WITH NATURAL THEOLOGYPART I.—Premonitions of Darwinism.—A Proper Subject for Speculation.—Summary of Facts and Ideas suggestive of Hypotheses of DerivationPart II—Limitations of Theory conceded by Darwin.—What Darwinism explains.—Geological Argument strong in the Tertiary Period.— Correspondence between Rank and Geological Succession—Difficulties in Classification.—Nature of Affinity.—No Absolute Distinction between Vegetable and Animal Kingdoms.—Individuality.—GradationPART III.—Theories contrasted.—Early Arguments against Darwinism.—Philosophical and Theological Objections—Theory may be theistic.—Final Cause not excluded.—Cause of Variation unknown.—Three Views of Efficient Cause compatible with Theism.—Agassiz's Objections of a Philosophical Nature.—Minor Objections.—ConclusionARTICLE IVSPECIES AS TO VARIATION, GEOGRAPHICAL DISTRIBUTION, AND SUCCESSIONAlphonse De Candolle's Study of the Oak Genus.—Variability of the Species.—Antiquity.—A Common Origin probable.—Dr. Falconer on the Common Origin of Elephants—Variation and Natural Selection distinguished.—Saporta on the Gradation between the Vegetable Forms of the Cretaceous and the Tertiary.—Hypothesis of Derivation more likely to be favored by Botanists than by Zoologists.—Views of Agassiz respecting the Origin, Dispersion, Variation, Characteristics, and Successive Creation of Species contrasted with those of De Candolle and others—Definition of Species—Whether its Essence is in the Likeness or in the Genealogical Connection of the Individuals composing a Species ARTICLE VSEQUOIA AND ITS HISTORY: THE RELATIONS OF NORTH AMERICAN TO NORTHEAST ASIAN AND TO TERTIARY VEGETATIONAge and Size of Sequoia.—Isolation.—Decadence.—Related Genera.— Former ARTICLE VITHE ATTITUDE OF WORKING NATURALISTS TOWARD DARWINISMGeneral Tendency to Acceptance of the Derivative Hypothesis noted.—Lyell, ARTICLE VIIEVOLUTION AND THEOLOGYWritings of Henslow, Hodges, and Le Conte examined.—Evolution and Design compatible.—The Admission of a System of Nature, with Fixed Laws, concedes in Principle all that the Doctrine of Evolution requires.—Hypotheses, Probabilities, and Surmises, not to be decried by Theologians, who use them, perhaps, more freely and loosely than Naturalists.—Theologians risk too much in the Defense of Untenable Outposts ARTICLE VIII"WHAT IS DARWINISM?"Dr. Hodges Book with this Title criticised.—He declares that Darwinism is Atheism, yet its Founder a Theist.—Darwinism founded, however, upon Orthodox Conceptions, and opposed, not to Theism, but only to Intervention in Nature, while the Key-note of Dr. Hedge's System is Interference.—Views and Writings of St. Clair, Winchell, and Kingsley adverted to ARTICLE IXCHARLES DARWIN: SKETCH ACCOMPANYING A PORTRAIT IN "NATURE"Darwin's Characteristics and Work as a Naturalist compared with those of ARTICLE XINSECTIVOROUS PLANTSClassification marks Distinctions where Nature exhibits Gradations.— ARTICLE XIINSECTIVOROUS AND CLIMBING PLANTSReview of Darwin's Two Works upon these Subjects—No Absolute Marks for distinguishing between Vegetables and Animals.—New observations upon the Sundews or Droseras.—Their Sensitiveness, Movements, Discernment of the Presence and Appropriation of Animal Matter.—Dionaea, and other Plants of the same Order.—Utricularia and Pinguicula.—Sarracenia and Nepenthes.—Climbing Plants; the Climbing effected through Sensitiveness or Response to External Impression and Automatic Movement.—Capacities inherent in Plants generally, and apparently of no Service to them, developed and utilized by those which climb.—Natural Selection not a Complete Explanation ARTICLE XIIDURATION AND ORIGINATION OF RACE AND SPECIESPART I.—Do Varieties in Plants wear out, or tend to wear out?—The Question considered in the Light of Facts, and in that of the Darwinian Theory.—Conclusion that Races sexually propagated need not die of Old Age.—This Conclusion inferred from the Provisions and Arrangements in Nature to secure Cross-Fertilization of Individuals.— Reference to Mr. Darwin's Development of this ViewPART II.—Do Species wear out, and, if not, why not?—Implication of the Darwinian Theory that Species are unlimited in Existence.—Examination of an Opposite Doctrine maintained by Naudin.—Evidence that Species may die out from Inherent Causes only indirect and inferential from Arrangements to secure Wide Breeding—Physiological Import of Sexes—Doubtful whether Sexual Reproduction with Wide Breeding is a Preventive or only a Palliative of Decrepitude in Species.— Darwinian Hypothesis must suppose the FormerARTICLE XIIIEVOLUTIONARY TELEOLOGYThe Opposition between Morphology and Teleology reconciled by Darwinism, and the Latter reinstated—Character of the New Teleology.—Purpose and Design distinguished—Man has no Monopoly of the Latter.—Inference of Design from Adaptation and Utility legitimate; also in Hume's Opinion irresistible—The Principle of Design, taken with Specific Creation, totally insufficient and largely inapplicable; but, taken with the Doctrine of the Evolution of Species in Nature, applicable, pertinent, and, moreover, necessary.—Illustrations from Abortive Organs, supposed Waste of Being, etc.—All Nature being of a Piece, Design must either pervade or be absent from the Whole.—Its Absence not to be inferred because the Events take place in Nature—Illustration of the Nature and Province of Natural Selection.—It picks out, but does not originate Variations; these not a Product of, but a Response to, the Environment; not physical, but physiological—Adaptations in Nature not explained by Natural Selection apart from Design or Final Cause—Absurdity of associating Design only with Miracle—What is meant by Nature.—The Tradition of the DIVINE in Nature, testified to by Aristotle, comes down to our Day with Undiminished Value PREFACEThese papers are now collected at the request of friends and correspondents, who think that they may be useful; and two new essays are added. Most of the articles were written as occasion called for them within the past sixteen years, and contributed to various periodicals, with little thought of their forming a series, and none of ever bringing them together into a volume, although one of them (the third) was once reprinted in a pamphlet form. It is, therefore, inevitable that there should be considerable iteration in the argument, if not in the language. This could not be eliminated except by recasting the whole, which was neither practicable nor really desirable. It is better that they should record, as they do, the writer's freely-expressed thoughts upon the subject at the time; and to many readers there may be some advantage in going more than once, in different directions, over the same ground. If these essays were to be written now, some things might be differently expressed or qualified, but probably not so as to affect materially any important point. Accordingly, they are here reprinted unchanged, except by a few merely verbal alterations made in proof-reading, and the striking out of one or two superfluous or immaterial passages. A very few additional notes or references are appended. To the last article but one a second part is now added, and the more elaborate Article XIII is wholly new. If it be objected that some of these pages are written in a lightness of vein not quite congruous with the gravity of the subject and the seriousness of its issues, the excuse must be that they were written with perfect freedom, most of them as anonymous contributions to popular journals, and that an argument may not be the less sound or an exposition less effective for being playful. Some of the essays, however, dealing with points of speculative scientific interest, may redress the balance, and be thought sufficiently heavy if not solid. To the objection likely to be made, that they cover only a part of the ground, it can only be replied that they do not pretend to be systematic or complete. They are all essays relating in some way or other to the subject which has been, during these years, of paramount interest to naturalists, and not much less so to most thinking people. The first appeared between sixteen and seventeen years ago, immediately after the publication of Darwin's "Origin of Species by Means of Natural Selection," as a review of that volume, which, it was then foreseen, was to initiate a revolution in general scientific opinion. Long before our last article was written, it could be affirmed that the general doctrine of the derivation of species (to put it comprehensively) has prevailed over that of specific creation, at least to the extent of being the received and presumably in some sense true conception. Far from undertaking any general discussion of evolution, several even of Mr. Darwin's writings have not been noticed, and topics which have been much discussed elsewhere are not here adverted to. This applies especially to what may be called deductive evolution—a subject which lay beyond the writer's immediate scope, and to which neither the bent of his mind nor the line of his studies has fitted him to do justice. If these papers are useful at all, it will be as showing how these new views of our day are regarded by a practical naturalist, versed in one department only (viz., Botany), most interested in their bearings upon its special problems, one accustomed to direct and close dealings with the facts in hand, and disposed to rise from them only to the consideration of those general questions upon which they throw or from which they receive illustration. Then as to the natural theological questions which (owing to circumstances needless now to be recalled or explained) are here throughout brought into what most naturalists, and some other readers, may deem undue prominence, there are many who may be interested to know how these increasingly prevalent views and their tendencies are regarded by one who is scientifically, and in his own fashion, a Darwinian, philosophically a convinced theist, and religiously an acceptor of the "creed commonly called the Nicene," as the exponent of the Christian faith. "Truth emerges sooner from error than from confusion," says Bacon; and clearer views than commonly prevail upon the points at issue regarding "religion and science" are still sufficiently needed to justify these endeavors. BOTANIC GARDEN, CAMBRIDGE, MASS., June, 1876. ______________________________________ ITHE ORIGIN OF SPECIES BY MEANS OFNATURAL SELECTION [I-1](American Journal of Science and Arts, March, 1860) This book is already exciting much attention. Two American editions are announced, through which it will become familiar to many of our readers, before these pages are issued. An abstract of the argument—for "the whole volume is one long argument," as the author states—is unnecessary in such a case; and it would be difficult to give by detached extracts. For the volume itself is an abstract, a prodromus of a detailed work upon which the author has been laboring for twenty years, and which "will take two or three more years to complete." It is exceedingly compact; and although useful summaries are appended to the several chapters, and a general recapitulation contains the essence of the whole, yet much of the aroma escapes in the treble distillation, or is so concentrated that the flavor is lost to the general or even to the scientific reader. The volume itself—the proof-spirit—is just condensed enough for its purpose. It will be far more widely read, and perhaps will make deeper impression, than the elaborate work might have done, with all its full details of the facts upon which the author's sweeping conclusions have been grounded. At least it is a more readable book: but all the facts that can be mustered in favor of the theory are still likely to be needed. Who, upon a single perusal, shall pass judgment upon a work like this, to which twenty of the best years of the life of a most able naturalist have been devoted? And who among those naturalists who hold a position that entitles them to pronounce summarily upon the subject, can be expected to divest himself for the nonce of the influence of received and favorite systems? In fact, the controversy now opened is not likely to be settled in an off-hand way, nor is it desirable that it should be. A spirited conflict among opinions of every grade must ensue, which—to borrow an illustration from the doctrine of the book before us—may be likened to the conflict in Nature among races in the struggle for life, which Mr. Darwin describes; through which the views most favored by facts will be developed and tested by "Natural Selection," the weaker ones be destroyed in the process, and the strongest in the long-run alone survive. The duty of reviewing this volume in the American Journal of Science would naturally devolve upon the principal editor,' whose wide observation and profound knowledge of various departments of natural history, as well as of geology, particularly qualify him for the task. But he has been obliged to lay aside his pen, and to seek in distant lands the entire repose from scientific labor so essential to the restoration of his health—a consummation devoutly to be wished, and confidently to be expected. Interested as Mr. Dana would be in this volume, he could not be expected to accept this doctrine. Views so idealistic as those upon which his "Thoughts upon Species" [I-2] are grounded, will not harmonize readily with a doctrine so thoroughly naturalistic as that of Mr. Darwin. Though it is just possible that one who regards the kinds of elementary matter, such as oxygen and hydrogen, and the definite compounds of these elementary matters, and their compounds again, in the mineral kingdom, as constituting species, in the same sense, fundamentally, as that of animal and vegetable species, might admit an evolution of one species from another in the latter as well as the former case. Between the doctrines of this volume and those of the other great naturalist whose name adorns the title-page of this journal, the widest divergence appears. It is interesting to contrast the two, and, indeed, is necessary to our purpose; for this contrast brings out most prominently, and sets in strongest light and shade, the main features of the theory of the origination of species by means of Natural Selection. The ordinary and generally-received view assumes the independent, specific creation of each kind of plant and animal in a primitive stock, which reproduces its like from generation to generation, and so continues the species. Taking the idea of species from this perennial succession of essentially similar individuals, the chain is logically traceable back to a local origin in a single stock, a single pair, or a single individual, from which all the individuals composing the species have proceeded by natural generation. Although the similarity of progeny to parent is fundamental in the conception of species, yet the likeness is by no means absolute; all species vary more or less, and some vary remarkably—partly from the influence of altered circumstances, and partly (and more really) from unknown constitutional causes which altered conditions favor rather than originate. But these variations are supposed to be mere oscillations from a normal state, and in Nature to be limited if not transitory; so that the primordial differences between species and species at their beginning have not been effaced, nor largely obscured, by blending through variation. Consequently, whenever two reputed species are found to blend in Nature through a series of intermediate forms, community of origin is inferred, and all the forms, however diverse, are held to belong to one species. Moreover, since bisexuality is the rule in Nature (which is practically carried out, in the long-run, far more generally than has been suspected), and the heritable qualities of two distinct individuals are mingled in the offspring, it is supposed that the general sterility of hybrid progeny interposes an effectual barrier against the blending of the original species by crossing. From this generally-accepted view the well-known theory of Agassiz and the recent one of Darwin diverge in exactly opposite directions. That of Agassiz differs fundamentally from the ordinary view only in this, that it discards the idea of a common descent as the real bond of union among the individuals of a species, and also the idea of a local origin—supposing, instead, that each species originated simultaneously, generally speaking, over the whole geographical area it now occupies or has occupied, and in perhaps as many individuals as it numbered at any subsequent period. Mr. Darwin, on the other hand, holds the orthodox view of the descent of all the individuals of a species not only from a local birthplace, but from a single ancestor or pair; and that each species has extended and established itself, through natural agencies, wherever it could; so that the actual geographical distribution of any species is by no means a primordial arrangement, but a natural result. He goes farther, and this volume is a protracted argument intended to prove that the species we recognize have not been independently created, as such, but have descended, like varieties, from other species. Varieties, on this view, are incipient or possible species: species are varieties of a larger growth and a wider and earlier divergence from the parent stock; the difference is one of degree, not of kind. The ordinary view—rendering unto Caesar the things that are Caesar's—looks to natural agencies for the actual distribution and perpetuation of species, to a supernatural for their origin. The theory of Agassiz regards the origin of species and their present general distribution over the world as equally primordial, equally supernatural; that of Darwin, as equally derivative, equally natural. The theory of Agassiz, referring as it does the phenomena both of origin and distribution directly to the Divine will—thus removing the latter with the former out of the domain of inductive science (in which efficient cause is not the first, but the last word)—may be said to be theistic to excess. The contrasted theory is not open to this objection. Studying the facts and phenomena in reference to proximate causes, and endeavoring to trace back the series of cause and effect as far as possible, Darwin's aim and processes are strictly scientific, and his endeavor, whether successful or futile, must be regarded as a legitimate attempt to extend the domain of natural or physical science. For, though it well may be that "organic forms have no physical or secondary cause," yet this can be proved only indirectly, by the failure of every attempt to refer the phenomena in question to causal laws. But, however originated, and whatever be thought of Mr. Darwin's arduous undertaking in this respect, it is certain that plants and animals are subject from their birth to physical influences, to which they have to accommodate themselves as they can. How literally they are "born to trouble," and how incessant and severe the struggle for life generally is, the present volume graphically describes. Few will deny that such influences must have gravely affected the range and the association of individuals and species on the earth's surface. Mr. Darwin thinks that, acting upon an inherent predisposition to vary, they have sufficed even to modify the species themselves and produce the present diversity. Mr. Agassiz believes that they have not even affected the geographical range and the actual association of species, still less their forms; but that every adaptation of species to climate, and of species to species, is as aboriginal, and therefore as inexplicable, as are the organic forms themselves. Who shall decide between such extreme views so ably maintained on either hand, and say how much of truth there may be in each? The present reviewer has not the presumption to undertake such a task. Having no prepossession in favor of naturalistic theories, but struck with the eminent ability of Mr. Darwin's work, and charmed with its fairness, our humbler duty will be performed if, laying aside prejudice as much as we can, we shall succeed in giving a fair account of its method and argument, offering by the way a few suggestions, such as might occur to any naturalist of an inquiring mind. An editorial character for this article must in justice be disclaimed. The plural pronoun is employed not to give editorial weight, but to avoid even the appearance of egotism, and also the circumlocution which attends a rigorous adherence to the impersonal style. We have contrasted these two extremely divergent theories, in their broad statements. It must not be inferred that they have no points nor ultimate results in common. In the first place, they practically agree in upsetting, each in its own way, the generally-received definition of species, and in sweeping away the ground of their objective existence in Nature. The orthodox conception of species is that of lineal descent: all the descendants of a common parent, and no other, constitute a species; they have a certain identity because of their descent, by which they are supposed to be recognizable. So naturalists had a distinct idea of what they meant by the term species, and a practical rule, which was hardly the less useful because difficult to apply in many cases, and because its application was indirect: that is, the community of origin had to be inferred from the likeness; such degree of similarity, and such only, being held to be con-specific as could be shown or reasonably inferred to be compatible with a common origin. And the usual concurrence of the whole body of naturalists (having the same data before them) as to what forms are species attests the value of the rule, and also indicates some real foundation for it in Nature. But if species were created in numberless individuals over broad spaces of territory, these individuals are connected only in idea, and species differ from varieties on the one hand, and from genera, tribes, etc., on the other, only in degree; and no obvious natural reason remains for fixing upon this or that degree as specific, at least no natural standard, by which the opinions of different naturalists may be correlated. Species upon this view are enduring, but subjective and ideal. Any three or more of the human races, for example, are species or not species, according to the bent of the naturalist's mind. Darwin's theory brings us the other way to the same result. In his view, not only all the individuals of a species are descendants of a common parent, but of all the related species also. Affinity, relationship, all the terms which naturalists use figuratively to express an underived, unexplained resemblance among species, have a literal meaning upon Darwin's system, which they little suspected, namely, that of inheritance. Varieties are the latest offshoots of the genealogical tree in "an unlineal" order; species, those of an earlier date, but of no definite distinction; genera, more ancient species, and so on. The human races, upon this view, likewise may or may not be species according to the notions of each naturalist as to what differences are specific; but, if not species already, those races that last long enough are sure to become so. It is only a question of time. How well the simile of a genealogical tree illustrates the main ideas of Darwin's theory the following extract from the summary of the fourth chapter shows: "It is a truly wonderful fact—the wonder of which we are apt to overlook from familiarity—that all animals and all plants throughout all time and space should be related to each other in group subordinate to group, in the manner which we everywhere behold—namely, varieties of the same species most closely related together, species of the same genus less closely and unequally related together, forming sections and sub-genera, species of distinct genera much less closely related, and genera related in different degrees, forming sub-families, families, orders, sub-classes, and classes. The several subordinate groups in any class cannot be ranked in a single file, but seem rather to be clustered round points, and these round other points, and so on in almost endless cycles. On the view that each species has been independently created, I can see no explanation of this great fact in the classification of all organic beings; but, to the best of my judgment, it is explained through inheritance and the complex action of natural selection, entailing extinction and divergence of character, as we have seen illustrated in the diagram. "The affinities of all the beings of the same class have sometimes been represented by a great tree. I believe this simile largely speaks the truth. The green and budding twigs may represent existing species; and those produced during each former year may represent the long succession of extinct species. At each period of growth all the growing twigs have tried to branch out on all sides, and overtop and kill the surrounding twigs and branches, in the same manner as species and groups of species have tried to overmaster other species in the great battle for life. The limbs divided into great branches, and these into lesser and lesser branches, were themselves once, when the tree was small, budding twigs; and this connection of the former and present buds by ramifying branches may well represent the classification of all extinct and living species in groups subordinate to groups. Of the many twigs which flourished when the tree was a mere bush, only two or three, now grown into great branches, yet survive and bear all the other branches; so with the species which lived during long-past geological periods, very few now have living and modified descendants. From the first growth of the tree, many a limb and branch has decayed and dropped off; and these lost branches of various sizes may represent those whole orders, families, and genera, which have now no living representatives, and which are known to us only from having been found in a fossil state. As we here and there see a thin, straggling branch springing from a fork low down in a tree, and which by some chance has been favored and is still alive on its summit, so we occasionally see an animal like the Ornithorhynchus or Lepidosiren, which in some small degree connects by its affinities two large branches of life, and which has apparently been saved from fatal competition by having inhabited a protected station. As buds give rise by growth to fresh buds, and these, if vigorous, branch out and overtop on all sides many a feebler branch, so by generation I believe it has been with the great Tree of Life, which fills with its dead and broken branches the crust of the earth, and covers the surface with its ever-branching and beautiful ramification." It may also be noted that there is a significant correspondence between the rival theories as to the main facts employed. Apparently every capital fact in the one view is a capital fact in the other. The difference is in the interpretation. To run the parallel ready made to our hands: [I-4] "The simultaneous existence of the most diversified types under identical circumstances . . . the repetition of similar types under the most diversified circumstances . . . the unity of plan in otherwise highly-diversified types of animals . . . the correspondence, now generally known as special homologies, in the details of structure otherwise entirely disconnected, down to the most minute peculiarities . . . the various degrees and different kinds of relationship among animals which (apparently) can have no genealogical connection . . . the simultaneous existence in the earliest geological periods, . . . of representatives of all the great types of the animal kingdom . . . the gradation based upon complications of structure which may be traced among animals built upon the same plan; the distribution of some types over the most extensive range of surface of the globe, while others are limited to particular geographical areas . . . the identity of structures of these types, notwithstanding their wide geographical distribution . . . the community of structure in certain respects of animals otherwise entirely different, but living within the same geographical area . . . the connection by series of special structures observed in animals widely scattered over the surface of the globe . . . the definite relations in which animals stand to the surrounding world, . . . the relations in which individuals of the same species stand to one another . . . the limitation of the range of changes which animals undergo during their growth . . . the return to a definite norm of animals which multiply in various ways . . . the order of succession of the different types of animals and plants characteristic of the different geological epochs, . . . the localization of some types of animals upon the same points of the surface of the globe during several successive geological periods . . . the parallelism between the order of succession of animals and plants in geological times, and the gradation among their living representatives . . . the parallelism between the order of succession of animals in geological times and the changes their living representatives undergo during their embryological growth, [I-5] . . . the combination in many extinct types of characters which in later ages appear disconnected in different types, . . . the parallelism between the gradation among animals and the changes they undergo during their growth, . . . the relations existing between these different series and the geographical distribution of animals, . . . the connection of all the known features of Nature into one system—" In a word, the whole relations of animals, etc., to surrounding Nature and to each other, are regarded under the one view as ultimate facts, or in the ultimate aspect, and interpreted theologically; under the other as complex facts, to be analyzed and interpreted scientifically. The one naturalist, perhaps too largely assuming the scientifically unexplained to be inexplicable, views the phenomena only in their supposed relation to the Divine mind. The other, naturally expecting many of these phenomena to be resolvable under investigation, views them in their relations to one another, and endeavors to explain them as far as he can (and perhaps farther) through natural causes. But does the one really exclude the other? Does the investigation of physical causes stand opposed to the theological view and the study of the harmonies between mind and Nature? More than this, is it not most presumable that an intellectual conception realized in Nature would be realized through natural agencies? Mr. Agassiz answers these questions affirmatively when he declares that "the task of science is to investigate what has been done, to inquire if possible how it has been done, rather than to ask what is possible for the Deity, since we can know that only by what actually exists;" and also when he extends the argument for the intervention in Nature of a creative mind to its legitimate application in the inorganic world; which, he remarks, "considered in the same light, would not fail also to exhibit unexpected evidence of thought, in the character of the laws regulating the chemical combinations, the action of physical forces, etc., etc." [I-6] Mr. Agassiz, however, pronounces that "the connection between the facts is only intellectual"—an opinion which the analogy of the inorganic world, just referred to, does not confirm, for there a material connection between the facts is justly held to be consistent with an intellectual—and which the most analogous cases we can think of in the organic world do not favor; for there is a material connection between the grub, the pupa, and the butterfly, between the tadpole and the frog, or, still better, between those distinct animals which succeed each other in alternate and very dissimilar generations. So that mere analogy might rather suggest a natural connection than the contrary; and the contrary cannot be demonstrated until the possibilities of Nature under the Deity are fathomed. But, the intellectual connection being undoubted, Mr. Agassiz properly refers the whole to "the agency of Intellect as its first cause." In doing so, however, he is not supposed to be offering a scientific explanation of the phenomena. Evidently he is considering only the ultimate why, not the proximate why or how. Now the latter is just what Mr. Darwin is considering. He conceives of a physical connection between allied species; but we suppose he does not deny their intellectual connection, as related to a supreme intelligence. Certainly we see no reason why he should, and many reasons why he should not, Indeed, as we contemplate the actual direction of investigation and speculation in the physical and natural sciences, we dimly apprehend a probable synthesis of these divergent theories, and in it the ground for a strong stand against mere naturalism. Even if the doctrine of the origin of species through natural selection should prevail in our day, we shall not despair; being confident that the genius of an Agassiz will be found equal to the work of constructing, upon the mental and material foundations combined, a theory of Nature as theistic and as scientific as that which he has so eloquently expounded. To conceive the possibility of "the descent of species from species by insensibly fine gradations" during a long course of time, and to demonstrate its compatibility with a strictly theistic view of the universe, is one thing; to substantiate the theory itself or show its likelihood is quite another thing. This brings us to consider what Darwin's theory actually is, and how he supports it. That the existing kinds of animals and plants, or many of them, may be derived from other and earlier kinds, in the lapse of time, is by no means a novel proposition. Not to speak of ancient speculations of the sort, it is the well-known Lamarckian theory. The first difficulty which such theories meet with is that in the present age, with all its own and its inherited prejudgments, the whole burden of proof is naturally, and indeed properly, laid upon the shoulders of the propounders; and thus far the burden has been more than they could bear. From the very nature of the case, substantive proof of specific creation is not attainable; but that of derivation or transmutation of species may be. He who affirms the latter view is bound to do one or both of two things: 1. Either to assign real and adequate causes, the natural or necessary result of which must be to produce the present diversity of species and their actual relations; or, 2. To show the general conformity of the whole body of facts to such assumption, and also to adduce instances explicable by it and inexplicable by the received view, so perhaps winning our assent to the doctrine, through its competency to harmonize all the facts, even though the cause of the assumed variation remain as occult as that of the transformation of tadpoles into frogs, or that of Coryne into Sarzia. The first line of proof, successfully carried out, would establish derivation as a true physical theory; the second, as a sufficient hypothesis. Lamarck mainly undertook the first line, in a theory which has been so assailed by ridicule that it rarely receives the credit for ability to which in its day it was entitled, But he assigned partly unreal, partly insufficient causes; and the attempt to account for a progressive change in species through the direct influence of physical agencies, and through the appetencies and habits of animals reacting upon their structure, thus causing the production and the successive modification of organs, is a conceded and total failure. The shadowy author of the "Vestiges of the Natural History of Creation" can hardly be said to have undertaken either line, in a scientific way. He would explain the whole progressive evolution of Nature by virtue of an inherent tendency to development, thus giving us an idea or a word in place of a natural cause, a restatement of the proposition instead of an explanation. Mr. Darwin attempts both lines of proof, and in a strictly scientific spirit; but the stress falls mainly upon the first, for, as he does assign real causes, he is bound to prove their adequacy. It should be kept in mind that, while all direct proof of independent origination is attainable from the nature of the case, the overthrow of particular schemes of derivation has not established the opposite proposition. The futility of each hypothesis thus far proposed to account for derivation may be made apparent, or unanswerable objections may be urged against it; and each victory of the kind may render derivation more improbable, and therefore specific creation more probable, without settling the question either way. New facts, or new arguments and a new mode of viewing the question, may some day change the whole aspect of the case. It is with the latter that Mr. Darwin now reopens the discussion. Having conceived the idea that varieties are incipient species, he is led to study variation in the field where it shows itself most strikingly, and affords the greatest facilities to investigation. Thoughtful naturalists have had increasing grounds to suspect that a reexamination of the question of species in zoology and botany, commencing with those races which man knows most about, viz., the domesticated and cultivated races, would be likely somewhat to modify the received idea of the entire fixity of species. This field, rich with various but unsystematized stores of knowledge accumulated by cultivators and breeders, has been generally neglected by naturalists, because these races are not in a state of nature; whereas they deserve particular attention on this very account, as experiments, or the materials for experiments, ready to our hand. In domestication we vary some of the natural conditions of a species, and thus learn experimentally what changes are within the reach of varying conditions in Nature. We separate and protect a favorite race against its foes or its competitors, and thus learn what it might become if Nature ever afforded it equal opportunities. Even when, to subserve human uses, we modify a domesticated race to the detriment of its native vigor, or to the extent of practical monstrosity, although we secure forms which would not be originated and could not be perpetuated in free Nature, yet we attain wider and juster views of the possible degree of variation. We perceive that some species are more variable than others, but that no species subjected to the experiment persistently refuses to vary; and that, when it has once begun to vary, its varieties are not the less but the more subject to variation. "No case is on record of a variable being ceasing to be variable under cultivation." It is fair to conclude, from the observation of plants and animals in a wild as well as domesticated state, that the tendency to vary is general, and even universal. Mr. Darwin does "not believe that variability is an inherent and necessary contingency, under all circumstances, with all organic beings, as some authors have thought." No one supposes variation could occur under all circumstances; but the facts on the whole imply a universal tendency, ready to be manifested under favorable circumstances. In reply to the assumption that man has chosen for domestication animals and plants having an extraordinary inherent tendency to vary, and likewise to withstand diverse climates, it is asked: "How could a savage possibly know, when he first tamed an animal, whether it would vary in succeeding generations and whether it would endure other climates? Has the little variability of the ass or Guinea-fowl, or the small power of endurance of warmth by the reindeer, or of cold by the common camel, prevented their domestication? I cannot doubt that if other animals and plants, equal in number to our domesticated productions, and belonging to equally diverse classes and countries, were taken from a state of nature, and could be made to breed for an equal number of generations under domestication, they would vary on an average as largely as the parent species of our existing domesticated productions have varied." As to amount of variation, there is the common remark of naturalists that the varieties of domesticated plants or animals often differ more widely than do the individuals of distinct species in a wild state: and even in Nature the individuals of some species are known to vary to a degree sensibly wider than that which separates related species. In his instructive section on the breeds of the domestic pigeon, our author remarks that "at least a score of pigeons might be chosen which if shown to an ornithologist, and he were told that they were wild birds, would certainly be ranked by him as well-defined species. Moreover, I do not believe that any ornithologist would place the English carrier, the short-faced tumbler, the runt, the barb, pouter, and fantail, in the same genus; more especially as in each of these breeds several truly-inherited sub-breeds, or species, as he might have called them, could be shown him." That this is not a case like that of dogs, in which probably the blood of more than one species is mingled, Mr. Darwin proceeds to show, adducing cogent reasons for the common opinion that all have descended from the wild rock-pigeon. Then follow some suggestive remarks: "I have discussed the probable origin of domestic pigeons at some, yet quite insufficient, length; because when I first kept pigeons and watched the several kinds, knowing well how true they bred, I felt fully as much difficulty in believing that they could ever have descended from a common parent as any naturalist could in coming to a similar conclusion in regard to many species of finches, or other large groups of birds, in Nature. One circumstance has struck me much; namely, that all the breeders of the various domestic animals and the cultivators of plants, with whom I have ever conversed, or whose treatises I have read, are firmly convinced that the several breeds to which each has attended are descended from so many aboriginally distinct species. Ask, as I have asked, a celebrated raiser of Hereford cattle, whether his cattle might not have descended from long-horns, and he will laugh you to scorn. I have never met a pigeon, or poultry, or duck, or rabbit fancier, who was not fully convinced that each main breed was descended from a distinct species. Van Mons, in his treatise on pears and apples, shows how utterly he disbelieves that the several sorts, for instance a Ribston-pippin or Codlin-apple, could ever have proceeded from the seeds of the same tree. Innumerable other examples could be given. The explanation, I think, is simple: from long-continued study they arc strongly impressed with the differences between the several races; and though they well know that each race varies slightly, for they win their prizes by selecting such slight differences, yet they ignore all general arguments, and refuse to sum up in their minds slight differences accumulated during many successive generations. May not those naturalists who, knowing far less of the laws of inheritance than does the breeder, and knowing no more than he does of the intermediate links in the long lines of descent, yet admit that many of our domestic races have descended from the same parents—may they not learn a lesson of caution, when they deride the idea of species in a state of nature being lineal descendants of other species?" The actual causes of variation are unknown. Mr. Darwin favors the opinion of the late Mr. Knight, the great philosopher of horticulture, that variability tinder domestication is somehow connected with excess of food. He regards the unknown cause as acting chiefly upon the reproductive system of the parents, which system, judging from the effect of confinement or cultivation upon its functions, he concludes to be more susceptible than any other to the action of changed conditions of life. The tendency to vary certainly appears to be much stronger under domestication than in free Nature. But we are not sure that the greater variableness of cultivated races is not mainly owing to the far greater opportunities for manifestation and accumulation—a view seemingly all the more favorable to Mr. Darwin's theory. The actual amount of certain changes, such as size or abundance of fruit, size of udder, stands of course in obvious relation to supply of food. Really, we no more know the reason why the progeny occasionally deviates from the parent than we do why it usually resembles it. Though the laws and conditions governing variation are known to a certain extent, those governing inheritance are apparently inscrutable. "Perhaps," Darwin remarks, "the correct way of viewing the whole subject would be, to look at the inheritance of every character whatever as the rule, and non-inheritance as the anomaly." This, from general and obvious considerations, we have long been accustomed to do. Now, as exceptional instances are expected to be capable of explanation, while ultimate laws are not, it is quite possible that variation may be accounted for, while the great primary law of inheritance remains a mysterious fact. The common proposition is, that species reproduce their like; this is a sort of general inference, only a degree closer to fact than the statement that genera reproduce their like. The true proposition, the fact incapable of further analysis, is, that individuals reproduce their like—that characteristics are inheritable. So varieties, or deviations, once originated, are perpetuable, like species. Not so likely to be perpetuated, at the outset; for the new form tends to resemble a grandparent and a long line of similar ancestors, as well as to resemble its immediate progenitors. Two forces which coincide in the ordinary case, where the offspring resembles its parent, act in different directions when it does not and it is uncertain which will prevail. If the remoter but very potent ancestral influence predominates, the variation disappears with the life of the individual. If that of the immediate parent—feebler no doubt, but closer—the variety survives in the offspring; whose progeny now has a redoubled tendency to produce its own like; whose progeny again is almost sure to produce its like, since it is much the same whether it takes after its mother or its grandmother. In this way races arise, which under favorable conditions may be as hereditary as species. In following these indications, watching opportunities, and breeding only from those individuals which vary most in a desirable direction, man leads the course of variation as he leads a streamlet—apparently at will, but never against the force of gravitation—to a long distance from its source, and makes it more subservient to his use or fancy. He unconsciously strengthens those variations which he prizes when he plants the seed of a favorite fruit, preserves a favorite domestic animal, drowns the uglier kittens of a litter, and allows only the handsomest or the best mousers to propagate. Still more, by methodical selection, in recent times almost marvelous results have been produced in new breeds of cattle, sheep, and poultry, and new varieties of fruit of greater and greater size or excellence. It is said that all domestic varieties, if left to run wild, would revert to their aboriginal stocks. Probably they would wherever various races of one species were left to commingle. At least the abnormal or exaggerated characteristics induced by high feeding, or high cultivation and prolonged close breeding, would promptly disappear; and the surviving stock would soon blend into a homogeneous result (in a way presently explained), which would naturally be taken for the original form; but we could seldom know if it were so. It is by no means certain that the result would be the same if the races ran wild each in a separate region. Dr. Hooker doubts if there is a true reversion in the case of plants. Mr. Darwin's observations rather favor it in the animal kingdom. With mingled races reversion seems well made out in the case of pigeons. The common opinion upon this subject therefore probably has some foundation, But even if we regard varieties as oscillations around a primitive centre or type, still it appears from the readiness with which such varieties originate that a certain amount of disturbance would carry them beyond the influence of the primordial attraction, where they may become new centres of variation. Some suppose that races cannot be perpetuated indefinitely even by keeping up the conditions under which they were fixed; but the high antiquity of several, and the actual fixity of many of them, negative this assumption. "To assert that we could not breed our cart and race horses, long and short horned cattle, and poultry of various breeds, for almost an infinite number of generations, would be opposed to all experience." Why varieties develop so readily and deviate so widely under domestication, while they are apparently so rare or so transient in free Nature, may easily be shown. In Nature, even with hermaphrodite plants, there is a vast amount of cross-fertilization among various individuals of the same species. The inevitable result of this (as was long ago explained in this Journal [I-7]) is to repress variation, to keep the mass of a species comparatively homogeneous over any area in which it abounds in individuals. Starting from a suggestion of the late Mr. Knight, now so familiar, that close interbreeding diminishes vigor and fertility; [I-8] and perceiving that bisexuality is ever aimed at in Nature—being attained physiologically in numerous cases where it is not structurally—Mr. Darwin has worked out the subject in detail, and shown how general is the concurrence, either habitual or occasional, of two hermaphrodite individuals in the reproduction of their kind; and has drawn the philosophical inference that probably no organic being self-fertilizes indefinitely; but that a cross with another individual is occasionally—perhaps at very long intervals—indispensable. We refer the reader to the section on the intercrossing of individuals (pp. 96—101), and also to an article in the Gardeners' Chronicle a year and a half ago, for the details of a very interesting contribution to science, irrespective of theory. In domestication, this intercrossing may be prevented; and in this prevention lies the art of producing varieties. But "the art itself is Nature," since the whole art consists in allowing the most universal of all natural tendencies in organic things (inheritance) to operate uncontrolled by other and obviously incidental tendencies. No new power, no artificial force, is brought into play either by separating the stock of a desirable variety so as to prevent mixture, or by selecting for breeders those individuals which most largely partake of the peculiarities for which the breed is valued. {I-9] We see everywhere around us the remarkable results which Nature may be said to have brought about under artificial selection and separation. Could she accomplish similar results when left to herself? Variations might begin, we know they do begin, in a wild state. But would any of them be preserved and carried to an equal degree of deviation? Is there anything in Nature which in the long-run may answer to artificial selection? Mr. Darwin thinks that there is; and Natural Selection is the key-note of his discourse, As a preliminary, he has a short chapter to show that there is variation in Nature, and therefore something for natural selection to act upon. He readily shows that such mere variations as may be directly referred to physical conditions (like the depauperation of plants in a sterile soil, or their dwarfing as they approach an Alpine summit, the thicker fur of an animal from far northward, etc.), and also those individual differences which we everywhere recognize but do not pretend to account for, are not separable by any assignable line from more strongly-marked varieties; likewise that there is no clear demarkation between the latter and sub-species, or varieties of the highest grade (distinguished from species not by any known inconstancy, but by the supposed lower importance of their characteristics); nor between these and recognized species. "These differences blend into each other in an insensible series, and the series impresses the mind with an idea of an actual passage." This gradation from species downward is well made out. To carry it one step farther upward, our author presents in a strong light the differences which prevail among naturalists as to what forms should be admitted to the rank of species. Some genera (and these in some countries) give rise to far more discrepancy than others; and it is concluded that the large or dominant genera are usually the most variable. In a flora so small as the British, 182 plants, generally reckoned as varieties, have been ranked by some botanists as species. Selecting the British genera which include the most polymorphous forms, it appears that Babington's Flora gives them 251 species, Bentham's only 112, a difference of 139 doubtful forms. These are nearly the extreme views, but they are the views of two most capable and most experienced judges, in respect to one of the best-known floras of the world. The fact is suggestive, that the best-known countries furnish the greatest number of such doubtful cases. Illustrations of this kind may be multiplied to a great extent. They make it plain that, whether species in Nature are aboriginal and definite or not, our practical conclusions about them, as embodied in systematic works, are not facts but judgments, and largely fallible judgments- How much of the actual coincidence of authorities is owing to imperfect or restricted observation, and to one naturalist's adopting the conclusions of another without independent observation, this is not the place to consider. It is our impression that species of animals are more definitely marked than those of plants; this may arise from our somewhat extended acquaintance with the latter, and our ignorance of the former. But we are constrained by our experience to admit the strong likelihood, in botany, that varieties on the one hand, and what are called closely-related species on the other, do not differ except in degree. Whenever this wider difference separating the latter can be spanned by intermediate forms, as it sometimes is, no botanist long resists the inevitable conclusion. Whenever, therefore, this wider difference can be shown to be compatible with community of origin, and explained through natural selection or in any other way, we are ready to adopt the probable conclusion; and we see beforehand how strikingly the actual geographical association of related species favors the broader view. Whether we should continue to regard the forms in question as distinct species, depends upon what meaning we shall finally attach to that term; and that depends upon how far the doctrine of derivation can be carried back and how well it can be supported. In applying his principle of natural selection to the work in hand, Mr. Darwin assumes, as we have seen: i. Some variability of animals and plants in nature; 2. The absence of any definite distinction between slight variations, and varieties of the highest grade; 3. The fact that naturalists do not practically agree, and do not increasingly tend to agree, as to what forms are species and what are strong varieties, thus rendering it probable that there may be no essential and original difference, or no possibility of ascertaining it, at least in many cases; also, 4. That the most flourishing and dominant species of the larger genera on an average vary most (a proposition which can be substantiated only by extensive comparisons, the details of which are not given); and, 5. That in large genera the species are apt to be closely but unequally allied together, forming little clusters round certain species—just such clusters as would be formed if we suppose their members once to have been satellites or varieties of a central or parent species, but to have attained at length a wider divergence and a specific character. The fact of such association is undeniable; and the use which Mr. Darwin makes of it seems fair and natural. The gist of Mr. Darwin's work is to show that such varieties are gradually diverged into species and genera through natural selection; that natural selection is the inevitable result of the struggle for existence which all living things are engaged in; and that this struggle is an unavoidable consequence of several natural causes, but mainly of the high rate at which all organic beings tend to increase. Curiously enough, Mr. Darwin's theory is grounded upon the doctrine of Malthus and the doctrine of Hobbes. The elder DeCandolle had conceived the idea of the struggle for existence, and, in a passage which would have delighted the cynical philosopher of Malmesbury, had declared that all Nature is at war, one organism with another or with external Nature; and Lyell and Herbert had made considerable use of it. But Hobbes in his theory of society, and Darwin in his theory of natural history, alone have built their systems upon it. However moralists and political economists may regard these doctrines in their original application to human society and the relation of population to subsistence, their thorough applicability to the great society of the organic world in general is now undeniable. And to Mr. Darwin belongs the credit of making this extended application, and of working out the immensely diversified results with rare sagacity and untiring patience. He has brought to view real causes which have been largely operative in the establishment of the actual association and geographical distribution of plants and animals. In this he must be allowed to have made a very important contribution to an interesting department of science, even if his theory fails in the endeavor to explain the origin or diversity of species. "Nothing is easier," says our author, "than to admit in words the truth of the universal struggle for life, or more difficult—at least I have found it so—than constantly to bear this conclusion in mind. Yet, unless it be thoroughly ingrained in the mind, I am convinced that the whole economy of Nature, with every fact on distribution, rarity, abundance, extinction, and variation, will be dimly seen or quite misunderstood. We behold the face of Nature bright with gladness, we often see superabundance of food; we do not see, or we forget, that the birds which are idly singing round us mostly live on insects or seeds, and are thus constantly destroying life; or we forget how largely these songsters, or their eggs, or their nestlings, are destroyed by birds and beasts of prey; we do not always bear in mind that, though food may be now superabundant, it is not so at all seasons of each recurring year."—(p. 62.) "There is no exception to the rule that every organic being naturally increases at so high a rate that, if not destroyed, the earth would soon be covered by the progeny of a single pair. Even slow-breeding man has doubled in twenty-five years, and at this rate, in a few thousand years, there would literally not be standing-room for his progeny. Linnaeus has calculated that if an annual plant produced only two seeds—and there is no plant so unproductive as this—and their seedlings next year produced two, and so on, then in twenty years there would be a million plants. The elephant is reckoned to be the slowest breeder of all known animals, and I have taken some pains to estimate its pro!)able minimum rate of natural increase; it will be under the mark to assume that it breeds when thirty years old, and goes on breeding till ninety years old, bringing forth three pairs of young in this interval; if this be so, at the end of the fifth century there would be alive fifteen million elephants, descended from the first pair. "But we have better evidence on this subject than mere theoretical calculations, namely, the numerous recorded cases of the astonishingly rapid increase of various animals in a state of nature, when circumstances have been favorable to them during two or three following seasons. Still more striking is the evidence from our domestic animals of many kinds which have run wild in several parts of the world; if the statements of the rate of increase of slow-breeding cattle and horses in South America, and latterly in Australia, had not been well authenticated, they would have been quite incredible. So it is with plants: cases could be given of introduced plants which have become common throughout whole islands in a period of less than ten years. Several of the plants now most numerous over the wide plains of La Plata, clothing square leagues of surface almost to the exclusion of all other plants, have been introduced from Europe; and there are plants which now range in India, as I hear from Dr. Falconer, from Cape Comorin to the Himalaya, which have been imported from America since its discovery. In such cases, and endless instances could be given, no one supposes that the fertility of these animals or plants has been suddenly and temporarily increased in any sensible degree. The obvious explanation is, that the conditions of life have been very favorable, and that there has consequently been less destruction of the old and young, and that nearly all the young have been enabled to breed. In such cases the geometrical ratio of increase, the result of which never fails to be surprising, simply explains the extraordinarily rapid increase and wide diffusion of naturalized productions in their new homes."—(pp. 64, 65.) "All plants and animals are tending to increase at a geometrical ratio; all would most rapidly stock any station in which they could anyhow exist; the increase must be checked by destruction at some period of life."—(p. 65.) The difference between the most and the least prolific species is of no account: "The condor lays a couple of eggs, and the ostrich a score; and yet in the same country the condor may be the more numerous of the two. The Fulmar petrel lays but one egg, yet it is believed to be the most numerous bird in the world."—(p. 68.) "The amount of food gives the extreme limit to which each species can increase; but very frequently it is not the obtaining of food, but the serving as prey to other animals, which determines the average numbers of species."—(p. 68.) "Climate plays an important part in determining the average numbers of a species, and periodical seasons of extreme cold or drought I believe to be the most effective of all checks. I estimated that the winter of 1854—'55 destroyed four-fifths of the birds in my own grounds; and this is a tremendous destruction, when we remember that ten per cent, is an extraordinarily severe mortality from epidemics with man. The action of climate seems at first sight to be quite independent of the struggle for existence; but, in so far as climate chiefly acts in reducing food, it brings on the most severe struggle between the individuals, whether of the same or of distinct species, which subsist on the same kind of food, Even when climate, for instance extreme cold, acts directly, it will be the least vigorous, or those which have got least food through the advancing winter, which will suffer most. When we travel from south to north, or from a damp region to a dry, we invariably see some species gradually getting rarer and rarer, and finally disappearing; and, the change of climate being conspicuous, we are tempted to attribute the whole effect to its direct action. But this is a very false view; we forget that each species, even where it most abounds, is constantly suffering enormous destruction at some period of its life, from enemies or from competitors for the same place and food; and if these enemies or competitors be in the least degree favored by any slight change of climate, they will increase in numbers, and, as each area is already stocked with inhabitants, the other species will decrease. When we travel southward and see a species decreasing in numbers, we may feel sure that the cause lies quite as much in other species being favored as in this one being hurt. So it is when we travel northward, but in a somewhat lesser degree, for the number of species of all kinds, and therefore of competitors, decreases northward; hence, in going northward, or in ascending a mountain, we far oftener meet with stunted forms, due to the directly injurious action of climate, than we do in proceeding southward or in descending a mountain. When we reach the arctic regions, or snow-capped summits, or absolute deserts, the struggle for life is almost exclusively with the elements. "That climate acts in main part indirectly by favoring other species, we may clearly see in the prodigious number of plants in our gardens which can perfectly well endure our climate, but which never become naturalized, for they cannot compete with our native plants, nor resist destruction by our native animals."—(pp. 68, 69.) After an instructive instance in which "cattle absolutely determine the existence of the Scotch fir," we are referred to cases in which insects determine the existence of cattle: "Perhaps Paraguay offers the most curious instance of this; for here neither cattle, nor horses, nor dogs, have ever run wild, though they swarm southward and northward in a feral state; and Azara and Rengger have shown that this is caused by the greater number in Paraguay of a certain fly, which lays its eggs in the navels of these animals when first born. The increase of these flies, numerous as they are, must be habitually checked by some means, probably by birds. Hence, if certain insectivorous birds (whose numbers are probably regulated by hawks or beasts of prey) were to increase in Paraguay, the flies would decrease—then cattle and horses would become feral, and this would certainly greatly alter (as indeed I have observed in parts of South America) the vegetation; this, again, would largely affect the insects; and this, as we have just seen in Staffordshire, the insectivorous birds, and so onward in ever-increasing circles of complexity. We began this series by insectivorous birds, and we had ended with them. Not that in Nature the relations can ever be as simple as this. Battle within battle must ever be recurring with varying success; and yet in the long-run the forces are so nicely balanced that the face of Nature remains uniform for long periods of time, though assuredly the merest trifle would often give the victory to one organic being over another. Nevertheless, so profound is our ignorance, and so high our presumption, that we marvel when we hear of the extinction of an organic being; and as we do not see the cause, we invoke cataclysms to desolate the world, or invent laws on the duration of the forms of life!"—(pp. 72, 73.) "When we look at the plants and bushes clothing an entangled bank, we arc tempted to attribute their proportional numbers and kinds to what we call chance. But how false a view is this! Every one has heard that when an American forest is cut down, a very different vegetation springs up; but it has been observed that the trees now growing on the ancient Indian mounds, in the Southern United States, display the same beautiful diversity and proportion of kinds as in the surrounding virgin forests. What a struggle between the several kinds of trees must here have gone on during long centuries, each annually scattering its seeds by the thousand; what war between insect and insect—between insects, snails, and other animals, with birds and beasts of prey—all striving to increase, and all feeding on each other or on the trees, or their seeds and seedlings, or on the other plants which first clothed the ground and thus checked the growth of the trees! Throw up a handful of feathers, and all must fall to the ground according to definite laws; but how simple is this problem compared to the action and reaction of the innumerable plants and animals which have determined, in the course of centuries, the proportional numbers and kinds of trees now growing on the old Indian ruins!"—(pp. 74, 75.) For reasons obvious upon reflection, the competition is often, if not generally, most severe between nearly related species when they are in contact, so that one drives the other before it, as the Hanoverian the old English rat, the small Asiatic cockroach in Russia, its greater congener, etc. And this, when duly considered, explains many curious results; such, for instance, as the considerable number of different genera of plants and animals which are generally found to inhabit any limited area. |