LIGHT-HOUSES.

Previous

A light-house, in marine architecture, is a building, or watch-tower, erected on the sea-shore, to serve as a land-mark to mariners, on a low coast, by day, and, in any situation, to inform them of their approach to land in the night;—being of most essential utility in causing them to take soundings, avoid shoals, rocks, &c.; or else it is a building erected on a rock in the sea, which, from its situation, would be extremely dangerous to vessels, were not some intimation given of the existence of a rock, where it is locally situated. Of this latter description is the celebrated Eddystone light-house, off Plymouth.

Although this species of architecture is not likely to have been so general in extreme antiquity, because it could not have been essentially necessary to any except to those nations who, from the proximity of their situation to the coast, or other circumstances, pursued maritime concerns; or to those whose connexions rendered the encouragement of the marine of other nations important.

The oldest building of this description, which we believe to be upon record, is the famous Pharos erected on the Egyptian coast, which, being very low land, and exposed entirely to the almost constant west winds coming up the Mediterranean from the vast Atlantic, must, of necessity, have made the port of modern Alexandria, anciently called Dalmietta, very dangerous. It was originally erected by Ptolemy Philadelphus, for the encouragement and convenience of the Phoenicians, who were accounted the foreign factors of that empire; as the Egyptians possessed an unconquerable aversion to the sea, and therefore they never obtained its sovereignty: whilst the former people were the first who obtained the supremacy of that sea.

The island upon which Pharos stood, in the time of Homer, in his simple geography and estimation, was said to be one day’s sail from the Delta; whereas, since the foundation of Alexandria, it was only a mile in distance, and was even joined to the mainland by a mole, having a bridge at each end; or according to some authors, in the middle. The tower was, if report be true, justly entitled to the appellation it obtained—one of the seven wonders of the world; and it is reported, that the light from it has been seen at the distance of a hundred miles; which, assuredly, appears improbable, because the convexity of the earth, we think, would not permit. Its height must have been, at least, 2,400 feet, or 800 yards from the base.

We are enabled to furnish the following particulars of this famous structure. It was built by order of that patron of learning and the arts, Ptolemy Philadelphus, by that eminent architect, Sostrates, who constructed many of the public buildings in Alexandria. It is said to have cost Ptolemy eight hundred talents! Respecting its mode of construction, it was raised several stories one above another; each was decorated with columns, balustrades, and galleries of the finest marble and most exquisite workmanship; and some have even said that the architect had furnished the galleries with large mirrors, by which shipping could be seen at a great distance. However, respecting this edifice, once so famous, that its very name, Pharos, was considered as a common term for all other constructions for the same purpose, it is now said, from Saracenic ignorance and brutality, aided, perhaps, by the assistance of the common leveller, Time, that nothing now remains of this once elegant edifice, but an unsightly tower rising out of a heap of ruins, the whole being accommodated to the inequality of the ground on which it stands, and being, at present, no higher than that which it should command. Such as it is, there is now a light, we understand, usually maintained. There is also an island, which was called Pharos, in the Adriatic sea, on the coast of Italy, opposite Brundusium, for the same reason: likewise the celebrated colossal statue of Apollo, at Rhodes, answered the same purpose, and occasionally had the same appellation, as had a river of Asia, in the environs of Cilicia and the Euphrates. This last consideration brings us to the etymology of the word, as Ozanum says, “Pharos originally signified a strait, as the Pharos of Messina.” Of every description of light-houses yet known, there is none more famous than that called Eddystone, with a description of which we shall conclude this article.

Mr. Winstanley’s light-house was begun upon the Eddystone rock in 1696, and was more than four years in building, from the numerous interruptions of the wind and the element he had to contend with, the violence whereof is truly alarming, occasioned by that rock being exposed to every wind which comes up the vast Atlantic, and that tumultuous sea, the Bay of Biscay. These obstacles were considerably increased by the shape of the rock itself, having a regular slope to S.W., and from the very deep sea in its vicinity, it, therefore, receives the uncontrolled fury of those seas: meeting with no other object whereon to break their vehement force, the effect is so great at high water with a S.W. wind, which continues for many days, though a calm may have succeeded, the violent action of the waters has not ceased, but break frightfully on Eddystone. An engraving of Mr. Winstanley’s light-house was published at the period of its erection, from which it appears to have been a stone tower of twelve sides, rising forty-four feet above the highest point of the rock, which, in the dimensions on which it was built, twenty-four feet in diameter, was ten feet lower on one side than it was upon the other; at the top was a balustrade and platform; upon this were erected eight pillars, which supported a dome of the same dimensions as the tower; from the top of which arose an octagon tower, of a diameter of fifteen feet, and seven in height. On the summit was placed the lantern, ten feet in diameter, and twelve in height: it had a gallery surrounding it, which gave access to the windows. The whole was surrounded by fencible iron-work. The entry was by a solid stone door at the bottom; the whole building was of the same material, except the aperture for the staircase. At the bottom was a room twelve feet high for a store-room; the next story was of the same height, which was the stateroom; and the third was of a similar height, which was the kitchen. Those compartments occupied the whole height to the platform. The dome above this contained the lodging-room; the octagon above it, the look-out.

The reason why it occupied so much time in building was, because the men could only work in the summer months. The first summer was occupied in making holes in the rock, and fastening irons to hold the future work. The second year was spent in erecting a solid pillar, of fourteen feet diameter, and one hundred and twelve feet high, for the future support of the building. The third year, it was augmented in diameter and increased in height. This building was eventually finished, within the time above-mentioned, at an enormous expense. It stood the opposition of the elements. The violence of the sea was so great, that Mr. Winstanley said it has been seen to rise upwards of one hundred feet above the vane, whilst the sides of the building were covered with surf as with a sheet, so that the whole house and lantern were occasionally under water. This edifice withstood the conflict of elements till 1703, when the architect, being at Plymouth, and desirous of visiting it, for the purpose of inspecting some repairs, went to it, but returned no more; for a storm arose, which left not a relic of it standing, except the iron work, which had been fixed in the rock. The Corporation of the Trinity House had then to erect another, for which purpose they employed a Mr. John Rudyard, who was a silk mercer, on Ludgate-hill. Mr. Rudyard’s mechanical ingenuity was said to have qualified him well for the undertaking. It appears that he erected a house made chiefly of wood, which presented many traits of his genius. It was a conical frustrum, one hundred and fifty-six feet in diameter at the base; its altitude sixty-two feet. At the top of the building was a balcony, railed round; in the centre of its area was the lantern. This building was made quite plain, excepting the well for the staircase, which was solid for thirty-two feet. In the centre a strong mast was erected. The building was admirably fixed to the rock, from the very peculiar manner of making the holes to hold iron cramps, they being made for the internal cavity to diverge on each side, by an extreme of one inch at the depth of sixteen inches. The cavity was first filled with tallow; the hot iron then dipped in the same substance, put in the rock, and eventually filled with pewter, which displaced the tallow, being heavier, the grease serving to protect the iron from the corrosive acidity of the salt water. In 1708, it was finished so far as to receive a temporary light. It stood forty-four years, and showed that it was liable to destruction from the very perishable nature of its materials. However, on the 2nd December, 1755, the upper part of it taking fire, burnt downwards to its entire consumption. The concern had been leased to a Captain Lovell; but at a later period his possessions were distributed among a number of people, when the care of rebuilding it was entrusted to Mr. Robert Weston, to whom Mr. John Smeaton was recommended by the President of the Royal Society, who appears to have been well qualified for the undertaking. He accordingly furnished a plan for, and superintended the building which now stands. Mr. Smeaton’s conjecture was quite different to that of the late projector; he conceived that nothing could withstand the action of the wind and water so well, and at the same time, prevent such accidents as the past, as could a building whose gravity should secure its most sure protection, He accordingly constructed his of the most massy stones, all dovetailed into each other, formed of Cornish-moor and Portland stone; all the joints breach each other, as the masons term it, or on each joint occurs the central stone of the next course. There are fourteen courses of these stones first laid in this manner, of a great thickness each course. On the 12th June, 1757, the first stone was laid in its place, each stone being pierced when it was laid, a strong oak pin was driven through to pin it fast to its place: the dovetails not fitting so close to each other, because it was necessary to leave some space for the cement, this pin was calculated to secure the stone till this could be applied and had fixed; the cement used was composed of Watchet lime and puzzolana, or Dutch terras, being made at the moment by mixing up in a pail, with water; this mixture was poured upon the work, and run into every cavity and crevice; this, however, was sometimes not exempt from the injury of the sea; whenever it was injured, the defect was supplied by having some oakum cut fine, and mixed with this cement, introduced into the joints; then they were secured with a coat of plaster of Paris, pro tempore, and this was never known to fail, if the work stood for one tide. In this manner the platform was erected, all of the most solid materials, and substantial workmanship.

On the 30th of September, 1758, the work having been continued from the 11th of the preceding May, had arrived at the store-room floor; here an iron chain was let into the stone, as follows: the recess being made and the chain being well oiled before insertion, the groove which received it was divided into four separate dams by clay; two kettles were used, to hold a sufficiency of melted lead, eleven hundred weight; whilst the lead was in a state of fusion, two men with ladles filled one quarter of the groove; as soon as it set, they removed one of the clay dams, and then filled the next quarter, pouring the liquid on the middle of the first quarter, it melted together into the second; the dam at the opposite end was now filled, and then the fourth; by this means the lead was associated into one solid mass. The centring for the floor was next set up, the outward stones being first set, and then the inner ones. Thus the base floor was finished. The men could work no longer than till the 7th of October that year. The winter was spent in preparing the iron, copper, and glass work for the lantern; and the spring in unsuccessful endeavours to discover the moorings for the vessel which attended the works, for the occasional retreat of the workmen. On the 5th of July the work was resumed: the stones for building had been hitherto raised from the boats by what are called shears, formed of two poles, with the lowermost ends extended to a sufficient width, whilst the upper ends met in a point; here was fastened tackle, pulleys, &c., to raise them to a sufficient height to be swung over the building; this course was now of necessity altered; a block with pulleys being suspended from the top, projected to a sufficient distance, supported by beams. After the base had been formed as described, a different mode of operation was necessary to complete the superstructure; the work being now advanced so high as to be out of the constant wash of the sea. Instead of grooves being formed to fasten the stones together, they were fixed by means of iron clamps and lead. The stones to complete the superstructure were landed, and first drawn up by machinery, called a jack, through the well, in the interior of the building, being a cavity for the staircase. The work now proceeded more rapidly, so that by the 26th of August, the stairs and all the masonry were finished: the iron frame for the lantern was next screwed together in its place, and the lantern soon completed. It should have been noticed, that after the first entry was closed, the shears were supported by a tackle called a guy, attached to the top of the shears, and hooked so far on the outside of the building; the stone being drawn up by a windlass, the guy was drawn in to swing the stone over the building. The balcony rails and the stone basement for the lantern having been completed, on the 17th of September the cupola was set up by a particular kind of shears constructed purposely, the guy in different places being fastened to booms projecting from the several windows of the upper rooms; the next day the ball was screwed on, and on the 11th of October, an electrical conductor was fixed, which finished the edifice. A light was then exhibited, which has continued to warn the mariner ever since. An ably constructed cornice throws the spray from off the building, so that it is often seen at Plymouth with the appearance of a white sheet, throwing itself to double the height of the building, which from low water mark to the apex of the ball is one hundred feet.

We have been thus minute, because this pharos is considered to be the best constructed of all our lighthouses.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page