ELEVENTH SECTION THE COST OF WAR AEROPLANES

Previous

I. Why manufacturers charge high prices—Cost of experimental work—Building of trial machines.

A decidedly interesting question is that of the cost of aeroplanes. It represents a consideration, also, which is of practical importance from the military point of view.

So far, the price of any aeroplane of a well-known make has been high. An ordinary-type biplane, for example, fitted with a "Gnome" engine, has been selling for approximately £1000. A monoplane of established repute, built to carry a pilot alone, has been listed at £900.

A military-type biplane, capable of carrying three men, has been selling at something like £1200, and a reconnoitring monoplane, for two occupants, has been priced at a figure in excess of£1000. There has, as a matter of fact, been good reason for manufacturers to demand high prices for their machines.

The expenses of a builder of aeroplanes are extremely heavy. His business is not at all like any ordinary commercial undertaking. He does not merely build a machine, and then sell it. He has costly researches to undertake, and wearisome and expensive experimental work to carry out.

Let us take a typical example. A prominent manufacturer in France designed a monoplane, which embodied improvements upon existing practice. Having the facilities of a well-equipped workshop, he speedily put his ideas to a practical test, and commenced the building of a machine.

This occupied some weeks, during which time, of course, the builder had the wages of his engineers to pay. Then, when the machine was ready for tests, he had to hand it over to his professional aviator—another well-paid employee. The monoplane was taken to the private flying ground which the manufacturer found it necessary to rent; and here, for a week or so, first experiments were carried out, the wages of the aviator being augmented by those of a regular staff of mechanics.

The result of the trials was that, after securing useful data, the monoplane was irretrievably wrecked, in landing after a flight. Whereupon, the manufacturer had to face the expense of building a second machine, embodying further improvements suggested—and going through the whole routine again.

This he did, devoting several weeks of his men's time to constructing the new machine. Once more, when it was finished, the professional aviator took it in hand. This time, after an even shorter career than the first machine, the monoplane was broken up. Again, however, improvements suggested themselves; and so the maker embarked, patiently, upon the construction of a third model.

To cut a long story short, this process of evolution went on until six monoplanes had been built, each one more reliable in action than its predecessor. It was only, in fact, when a seventh machine stood ready, that the manufacturer considered he had a flying machine he could offer to prospective purchasers, as a safe and improved type.

In fixing the price that he should ask for this new model, the manufacturer was guided, naturally, by the outlay that had been necessary in perfecting it. It would have been unreasonable, under such circumstances, for the purchaser to expect to buy the machine at a figure which represented a small profit for its builder, over and above the actual cost of production of that one model. Having spent thousands of pounds upon his experiments, the manufacturer was obliged to recoup himself, by charging a high price for his goods.

Another factor would also govern price in such circumstances as these. The manufacturer would have no guarantee as to selling any fixed number of machines. In the case of a new motor-car, for instance, the machine is standardised; and, if it is a good one, a large number are sold. This, naturally, reduces the price per machine.

But, in the case of this new monoplane, even if it is the best produced at the moment, the question of the number to be sold is an unsatisfactorily vague quantity. After only two or three have been disposed of, for instance, another machine may be put upon the market which is a few miles an hour faster; whereupon, the aviators who are intent upon winning speed prizes quickly devote their attention to the new machine.

As may be imagined, therefore, what with enormously-heavy first costs, and a doubtful sale even when a good machine is produced, the manufacturer of aeroplanes has no alternative but to charge a high price for the machines he does succeed in disposing of.

Let us consider, for a moment, the experience of such a famous manufacturer as M. Louis BlÉriot. It was in 1906 that he began experimenting with monoplanes, entirety at his own expense; and he was spending money lavishly on new machines, and devoting a vast amount of time to the problem, until the summer of 1909. Apart from the money he spent, and the aircraft he broke up, he risked his life, on many occasions, in attempting to fly on machines which were entirely experimental.

It was estimated, indeed, that—before this famous airman and constructer flew the Channel, in July, 1909—he had expended a fortune upon aerial research work. It was perfectly legitimate, therefore, that he should endeavour to recoup himself, for all his time and expense, when a sale did spring up for his machines.

It has not been a case, since then, of producing machines of a standard type. Directly he had perfected the simple, low-powered monoplane upon which he crossed from France to England, M. BlÉriot began experimenting with a more powerful machine; and so he has been engaged ever since.

In his works in Paris, for example, M. BlÉriot employs a skilled staff of draughtsmen, who are busy every day upon designs for new machines. He must keep pace with his rivals, and he must meet the growing demands of the military service. Faster and more reliable machines are demanded every day, and strenuous efforts must be made to fulfil these demands. Therefore, the expense of running an aeroplane factory is exceptionally high.

These facts are interesting, as they explain why "a few bits of stick and canvas, and an engine," as an aeroplane has been described, should cost as much as £1000. It is not so much the wood, and the canvas, and the engine that the purchaser is paying for, as the months, and perhaps years, of patient toil and ceaseless expense, which have gone to the production of a practical machine.

High prices are charged for aeroplane engines. Here, again, the same causes are at work. Most costly are the preliminary expenses connected with the production of a new petrol engine. In the case of the famous "Gnome," for instance, many thousands of pounds were spent upon a series of experimental engines, before a reliable model could be obtained.

II. Economy of a large military order for machines—The incidental expenses.

The idea has been conveyed, by the previous notes, that the aeroplane is an expensive machine. So it is, at present, so far as the private purchaser is concerned—although its champions are already prone to point out that a first-class flying machine does not cost more than a high-powered, luxurious motor-car.

When the aeroplane is regarded as a weapon of war, however, it should not be considered expensive. It is, in fact, remarkably cheap, particularly when compared with the cost of other forms of armament.

The prices, previously quoted, as representing the cost of the best makes of aeroplane, have been for individual machines; and this introduces a point which is greatly in favour of any War Department, when it seeks to equip itself with a number of aeroplanes. Through placing orders for a batch of machines, instead of buying one here and there, any Government should be able materially to reduce the price of any make.

Grant, for the sake of argument, that a country decides to provide itself with a fleet of a hundred war aeroplanes. The policy, in such a case, would be to look round, at the beginning of any flying season, and make a selection, say, of the three types of machine best suited for the tasks arising in military work.

It would certainly not be wise to buy a hundred machines all of one type, although, by so doing, the price for each machine could be more reduced than in the case of splitting up an order between several manufacturers. But such a policy of having "all one's eggs in one basket" would not be judicious—or fair to the industry as a whole. Government policy, in this regard, should be to support as many manufacturers as is reasonably possible, and thus ensure the industry maintaining a healthy position.

Orders placed with a number of makers would be necessary, in fact. But, even with such a distribution as this, a considerable saving of expense could be made. Expert estimates have been given as to the cost, per machine, of a hundred war aeroplanes, all ordered at the same time; and a reasonably exact figure places the average price, for each machine, at £600.

This represents a very definite reduction upon the price of a single machine; and it also indicates that, in the future, when aeroplanes are bought in even larger numbers, for war purposes, the cost of each machine will become an almost insignificant item—insignificant, that is to say, when compared with the cost of other forms of armament. When a thousand machines can be ordered, and built at one time, for example, the cost per machine will be enormously reduced.

There should be no outcry, indeed, as to the cost of war aeroplanes. The Admiralty embarks, without question, upon the construction of a great battleship, although it knows that each huge craft will speedily become obsolete. This money is not grudged; it is for the defence of the country.

The same attitude should be taken up as regards the creation of a fleet of war aeroplanes. They, too, have become essential weapons.

War aeroplanes are, in their own sphere, quite as important as battleships. And the contrast between the two weapons, in the matter of price, is extraordinary. For the price of one Dreadnought it is, indeed, estimated that a fleet of a couple of thousand aeroplanes could be created.

An enthusiastic advocate of the war aeroplane puts this matter of cost very forcibly. "It is as nothing," he declares. "A vote of a few hundred thousand pounds would place the whole air service on a sound basis, so far as England is concerned. The net cost of each aeroplane, in a squadron, is an absolutely insignificant item of expense, when we reckon what we are spending, in other ways, on our Army and Navy. One aircraft represents only about twice the amount spent in making one of the great shells fired by our biggest naval guns. It is this astonishing cheapness of the aeroplane, having regard to its revolutionary work, which is the surprising factor of the situation. It will mean, of course, that flying machines will be used, eventually, in huge fleets."

Naturally, the purchase of a hundred machines does not represent the total outlay, in connection with the establishment of a well-equipped air-corps. An organisation must be built up round these machines, and there must be men not only to fly them, but to keep them in a state of efficiency; and there is the need, also, of housing the air-fleet.

The question of providing sheds for a fleet of machines is an important one. Aeroplanes must be well housed, or their depreciation is rapid. Whatever sheds are provided must, apart from being strong and weather-proof, be portable as well.

Under the same heading, also, should come the workshops—some of them portable—necessary to cope with repairs and renewals in connection with machines. This, too, is an important item, as first-class repair work is an essential feature in the organisation of any air service.

An estimate of the money that should be expended upon sheds and repair-shops—for a fleet of a hundred aeroplanes—places the amount at £20,000. Money should not be stinted in this direction; good sheds, and efficient repairs, should both tell their tale, when the aeroplane is used in a campaign.

[image]

PILOT AND "OBSERVER."
Photo, M. Roe.
The above photograph shows a military-type Breguet biplane, as used in the French manoeuvres, with pilot and observer in their places.

Now it is necessary to touch upon the question of military flying grounds, and the expense incurred in keeping them in proper order; also the sum of money necessary to provide a sufficient number of motor transport lorries for the air-fleet. As has been explained, the plan generally adopted is for an aeroplane to be transported from point to point on a lorry, and followed by a repair-car.

In regard to the English trials of war aeroplanes, a point is made—in connection with the size of the packing-cases for machines—of the possibility of transporting aircraft by railway in time of war. Undoubtedly, under favourable circumstances, this would provide a rapid method of bringing up machines from a distance.

Under the headings of the expenditure upon flying grounds, and the provision of motor-lorries to follow aeroplanes, and act as transport waggons, a reasonable estimate of the sum to be expended—in connection with a fleet of a hundred machines—is £20,000.

The sum of £100,000 should be sufficient, not only to purchase a hundred war aeroplanes, but to equip the corps with sheds and repair-shops, and also to maintain flying grounds, and provide an adequate number of motor-lorries.

This amount allocated for machines and incidentals, a Government would find itself face to face with the question of providing officers and men for the air-corps. Pay for this corps should, it is considered, be represented by an annual sum of approximately £60,000.

III. Question of renewals—General cheapness of an air-corps, as compared with other forms of armament.

A point of considerable importance, in regard to an air-corps, concerns the money which should be put aside, each year, for the provision of new machines. One eminently practical authority, Colonel J. E. Capper, reckons that, in connection with a fleet of a hundred aeroplanes, an allowance should be made for the purchase of forty new machines each year.

Upon this question of renewals there is, however, diversity of opinion. The contention is made, for example, that a Government should be prepared, at the commencement of the flying season, to relegate all its previous year's machines to the schools, for the use of pupils, and purchase a new fleet of up-to-date craft for use in war-time.

Such a drastic step, however, should not be necessary. It would be advisable, of course, to weed out a number of machines, from time to time, for the reason that they become obsolete; and such machines should, as suggested, find a place at the schools for the use of beginners.

The exact number of new aeroplanes which it should be advisable to buy, in any one year, must be governed, very largely, by the process of perfection which goes on. For the next year or so, it is probable that an allowance for renewals will need to be a heavy one. Afterwards, as the rate of improvement becomes slower, the purchase of new machines will represent a lighter item.

A good reconnoitring biplane, say of the flying season of 1911, is not likely to become obsolete in 1912. A new machine will probably fly farther and faster, and carry more weight; but the 1911 biplane will still be capable of useful work, and need not be relegated to the scrap-heap. It will behove a Government, of course, to equip itself with as many new-type machines as possible; and an estimate of forty new machines a year, in connection with a fleet of a hundred, is by no means unreasonable.

This, of course, presupposes a logical process of development, with an improved type of machine appearing from year to year. Should a revolutionary discovery be made, the plans of all nations would be altered. It might then become necessary, in the interests of national safety, to "scrap" a whole fleet of aeroplanes, in order to make way for the type which had made them obsolete.

But the unexpected production of an aeroplane, immeasurably superior to existing models, is not anticipated. Already, it is true, the way can be seen to make many improvements upon present-type aeroplanes; but, in regard to such a difficult problem as that of aviation, the testing and perfecting of any new device, however simple, cannot be hastily carried out.

One other consideration, in regard to the running costs of a fleet of machines, now presents itself. This concerns the allowance to be made for the general upkeep of the aeroplanes, and for such items as the provision of petrol and oil. Here an expert computation places the figure—for an air service of a hundred machines—at a sum of £16,000.

It is possible to arrive at a summary of the cost of the purchase and upkeep of a fleet of a hundred machines. First would come the expenditure of £100,000 upon the aeroplanes themselves, and incidentals; and then the Government would need to be ready to spend another £100,000 a year upon the upkeep of the corps.

Such estimates as this go to reveal the inadequacy of the grant made by the British Government for the year 1911-12. As has been previously mentioned, the actual sum devoted to aeroplaning, dirigible ballooning, and the upkeep of the Air Battalion, has been £85,000. Owing to the costliness of airships, only a small portion of this sum has been devoted to aeroplanes. There is no chance—with such a grant as this—of mapping out an adequate programme for aeroplane work.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page