THE FUTURE OF FLIGHTIt is a hopeful augury, to those concerned with aviation, that public interest in flying should not only be keen, but should be growing. In the early days, even when aeroplanes were so great a novelty, it was difficult to induce people in any numbers to witness a flying display. The first meetings, though they were organised with enthusiasm, ended as a rule with a heavy financial loss; and this fact of course, when it became known, had a discouraging influence on those who might, had these early meetings proved a success, have been willing to finance aerodromes and the building of machines. But as it was, business men, who are quick to form conclusions, said that people would never be induced to pay to see aeroplanes fly. But here they failed to reckon with the fact that, though public interest in flying has been of very slow growth, yet at the same time it has been a steady and continuous growth. From month to month, and from year to year, as aeroplane constructors and pilots have continued at their tasks, overcoming technical difficulties and personal risks, the interest of ordinary people has grown perceptibly. Even before the war—which has done so much to focus attention on flying—the attitude of scepticism and apathy had been greatly changed. When the London Aerodrome at Hendon was established, there were shrewd men in the city, men who are ordinarily very sound in their conclusions, who declared the public would never go there in appreciable numbers. How wrong they In the immediate future, as in the immediate past, aviation will be concerned largely with the building of naval and military craft. This will, so to say, be the foundation of its development in other directions. War for instance, notably in the fitting of craft with duplicate power-plants, will provide data that is invaluable in the building of commercial craft, and in machines also for the use of the tourist. In aerial touring there lies an important field for the development of aircraft—one which may serve to bridge the gap between a relatively small, purely pleasure-type machine, and a craft which has utility in the fields of commerce. The motor-car provides an enjoyable means of travelling from place to place; but in the aeroplane, once it is airworthy, reliable, and comfortable, the tourist has a vehicle which is distinctly more pleasurable and exhilarating. The day was dawning before the war, and will now be hastened, when, garaging his aircraft at the London Aerodrome as a convenient starting-point, an aerial traveller will tour regularly by air, using his flying machine as he would a motor. Already, dotted about England, are aerodromes he may use as halting-points on his flight, and at which he can house his machine and secure the attention of mechanics; and the number of these grounds should grow rapidly in the future. In the aeroplane for the tourist, for the man who buys a machine and flies for his own pleasure, it is necessary to combine comfort and safety. As regards comfort, though much remains to be done in the perfection of detail, the occupants of a machine are now more studied than they were in the pioneer days. Then a pilot sat out on a crude seat, exposed fully to the rush When touring by air under favourable conditions, there should be no more risk with an aircraft than with a motor-car. One of the most frequent causes of accident, as we have shown, has been the structural weakness of a machine. Now, with the experience of the war on which to draw, and with many clever brains focussed on the development of the industry, this risk may be regarded as almost non-existent; as negligible a factor as it is possible to make it, remembering that aircraft, like other mechanism, have to be built by human hands. Another risk, that of engine failure, may, as we have explained, be eliminated by the use of more than one motor. In the application of such systems there is still much to be learned; but the obstacles are not insuperable. One advantage that can be offered the aerial tourist, reckoning him as a pilot of no more than average skill, who needs all the aid that science can give him, is that he can obtain a machine which, owing to its automatic stability, requires merely to be taken into the air and brought to earth again, and which will practically fly itself, once it is aloft. One of the needs with a touring machine, to which makers must devote their attention, is that it should be able to leave the ground quickly in its ascent, and so permit its pilot to rise even from a small starting ground. And it is equally necessary that, on occasion, a machine should be able to alight safely, and at a slow speed, in quite a small field. An aviator who had given up aviation temporarily, after a long spell of cross-country flying, was asked one day when he was going to fly again. "I shan't do so," he said, "till I Already there are craft which, provided high speeds are not expected of them, and they are given ample plane-surface, will alight at quite a moderate pace; but in the future, by the use of machines which have the power of increasing or reducing their wing-surfaces while in flight, it should be possible to descend in a space no larger, say, than a garden. In the construction of variable-surface machines, technical problems need to be faced which are unusually difficult. The theory with such craft is that their sustaining planes, either by a telescopic system, or by some process of reefing, are built so that they can be expanded or contracted at the will of the pilot. Thus in rising, when a machine is required to ascend with a minimum run forward across the ground, a large area of lifting surface would be exposed; and at the moment of alighting, also, when it was desired that a machine should make its contact with the ground at the slowest possible speed, a maximum of plane surface would be employed. But when aloft, and in full flight, the pilot would be able if he so desired to reduce the area of his lifting surface, and so increase materially his speed. With a machine of this type, when perfected, it should be possible to rise quickly, and descend slowly, and yet at the same time, when well aloft, attain a high speed with moderate engine-power. The commercial possibilities of aviation are vast and far-reaching: not for nothing, after centuries of striving, have men conquered the air. The aeroplane is destined, by the facilities it offers for communication between nations, to play a vital part in the growth of civilisation. The construction and perfection of a commercial aeroplane, a machine which can be used for the transport of passengers, mails, and goods, represents largely a question of time and of money. As to the factor of time, this depends largely on the facilities that are obtained by the industry—apart from its work on naval and military craft—for test work with other machines. But in five years' time, granted progress continues on the lines now promised, we should have a service of passenger aeroplanes, each carrying fifty or more people, flying daily between London, the Midlands, and the North; while in ten years' time it should be possible to cross the Atlantic, from London to New York, by means of a regular service of aerial craft. The commercial aeroplane, even when perfected, would not be likely to compete successfully with other means of transit unless it could offer the advantages of a greater speed. Here, indeed, in the speeds they will attain, lies the future of aircraft. The air will be our highway because, in the air, speeds will be reached that are impossible on land or sea. As civilisation extends—this is of course a truism—there grows with it a need for speedier travel; and we have seen land and sea transit striving to meet this demand. But both have reached, or are rapidly reaching, a limit of speed—a limit imposed by the need to carry their passengers and goods on a remunerative basis. On the sea, by But by way of the air, granted even a speeding-up on land and sea, should go the high-speed traffic of the future. By a greater efficiency in lifting surfaces and by reductions in the resistance a craft offers to its own passage through the air; by the provision of systems which will permit a pilot to reduce plane-area when his machine has gained altitude and he desires a maximum speed; by the equipping of craft with motors developing thousands of horse-power for a very low weight—by such means, and by a general improvement in design, it should be possible, eventually, to attain flying speeds of 150, 200, and even 250 miles an hour. From London to New York by air liner, in less than twenty hours; such, for instance, should be an attainment of the future. It seems probable, in the development of the commercial aeroplane, we shall have machines for touring and for pleasure flights—craft not of large size but in which efforts are made to obtain a greater reliability and comfort. Then it appears likely that aircraft THE END |